I'm looking at the exercises of Hungerfod's(adsbygoogle = window.adsbygoogle || []).push({}); Algebra. Some looks easy but it seems the proofs are not so obvious. Here's one I'm particularly having a hard time solving:

Let G be an abelian group of order pq with (p,q)=1. Assume that there exists elements a and b in G such that |a|= p and |b| = q. Show that G is cyclic.

Help anyone?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cyclic abelian group of order pq

**Physics Forums | Science Articles, Homework Help, Discussion**