MHB Cylindrical coordinates - Orthonormal system

Click For Summary
Cylindrical coordinates utilize an orthonormal system of vectors, specifically $\overrightarrow{e}_r$, $\overrightarrow{e}_{\theta}$, and $\overrightarrow{e}_z$, which can be expressed in terms of Cartesian coordinates $(x, y, z)$ and unit vectors $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$. The vector $\overrightarrow{e}_r$ is defined as $\overrightarrow{e}_r = \frac{x}{r}\overrightarrow{i} + \frac{y}{r}\overrightarrow{j} + \frac{z}{r}\overrightarrow{k}$, while $\overrightarrow{e}_{\theta}$ is given by $(-\sin \theta)\overrightarrow{i} + (\cos \theta)\overrightarrow{j}$. The calculation of the cross product $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ yields $-y\overrightarrow{k}$. To visualize these vectors geometrically, drawing the coordinate system and the vectors can help clarify their orientations. Understanding these relationships is essential for working with cylindrical coordinates in various applications.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using cylindrical coordinates and the orthonormal system of vectors $\overrightarrow{e}_r, \overrightarrow{e}_{\theta}, \overrightarrow{e}_z$
  1. describe each of the $\overrightarrow{e}_r$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_z$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using cylindrical coordinates and the orthonormal system of vectors $\overrightarrow{e}_r, \overrightarrow{e}_{\theta}, \overrightarrow{e}_z$
  1. describe each of the $\overrightarrow{e}_r$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_z$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)

Hi! ;)

We have the point $\overrightarrow r = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.
Its spherical coordinates are $(r,\theta,\phi)$.

At the point we want to have a local orthonormal basis aligned with spherical coordinates.
The vector $\overrightarrow{e}_r$ is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $r$.
That is in the direction of $\overrightarrow r$.
Normalizing to unit length, we get:
$$\overrightarrow{e}_r = \frac x r\overrightarrow{i} + \frac y r\overrightarrow{j} + \frac z r\overrightarrow{k}$$
Alternatively we can say that:
$$\overrightarrow{e}_r = \frac{\d {\overrightarrow r}{r}}{\left|\d {\overrightarrow r}{r}\right|}$$
(Nerd)

Next is $\overrightarrow{e}_{\theta}$, which is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $\theta$.
What would its direction be? (Wondering)
 
I like Serena said:
Next is $\overrightarrow{e}_{\theta}$, which is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $\theta$.
What would its direction be? (Wondering)

Is it $$\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\left|\d {\overrightarrow r}{\theta}\right|}$$ ?? (Wondering)

Do we have the following:

$$\overrightarrow{e}_{r}=(\cos \theta )\overrightarrow{i}+(\sin \theta )\overrightarrow{j} \\ \overrightarrow{e}_{\theta}=(-r \sin \theta )\overrightarrow{i}+(r \cos \theta )\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$ ?? (Wondering)

So using $$x=r \cos \theta , y=r \sin \theta , z=z$$ we have the following:

$$\overrightarrow{e}_{r}=\frac{x\overrightarrow{i}+y \overrightarrow{j}}{\sqrt{x^2+y^2}} \\ \overrightarrow{e}_{\theta}=-y\overrightarrow{i}+x\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$

Is this correct??
For the question 2. using 1. we have that $$\overrightarrow{e}_{\theta} \times \overrightarrow{j}=-y \overrightarrow{k}$$ right?? (Wondering)

But how could we show it geometrically?? (Wondering)
 
mathmari said:
Is it $$\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\left|\d {\overrightarrow r}{\theta}\right|}$$ ?? (Wondering)

Do we have the following:

$$\overrightarrow{e}_{r}=(\cos \theta )\overrightarrow{i}+(\sin \theta )\overrightarrow{j} \\ \overrightarrow{e}_{\theta}=(-r \sin \theta )\overrightarrow{i}+(r \cos \theta )\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$ ?? (Wondering)

So using $$x=r \cos \theta , y=r \sin \theta , z=z$$ we have the following:

$$\overrightarrow{e}_{r}=\frac{x\overrightarrow{i}+y \overrightarrow{j}}{\sqrt{x^2+y^2}} \\ \overrightarrow{e}_{\theta}=-y\overrightarrow{i}+x\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$

For the question 2. using 1. we have that $$\overrightarrow{e}_{\theta} \times \overrightarrow{j}=-y \overrightarrow{k}$$ right?? (Wondering)

Is this correct??

Almost.
We still have to normalize $\overrightarrow{e}_{\theta}$ to unit length. (Wasntme)
But how could we show it geometrically?? (Wondering)

Did you make a drawing? (Wondering)
 
I like Serena said:
Almost.
We still have to normalize $\overrightarrow{e}_{\theta}$ to unit length. (Wasntme)

Is it $$\overrightarrow{e}_{\theta}=-sin \theta \overrightarrow{i}+\cos \theta \overrightarrow{j}$$ ?? (Wondering)
I like Serena said:
Did you make a drawing? (Wondering)

No... How could I do that?? (Wondering)
 
mathmari said:
Is it $$\overrightarrow{e}_{\theta}=-sin \theta \overrightarrow{i}+\cos \theta \overrightarrow{j}$$ ?? (Wondering)

Yep! (Nod)

No... How could I do that?? (Wondering)

Something like this:
CylindricalCoordinates_1001.gif
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
11
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K