MHB Cylindrical coordinates - Orthonormal system

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using cylindrical coordinates and the orthonormal system of vectors $\overrightarrow{e}_r, \overrightarrow{e}_{\theta}, \overrightarrow{e}_z$
  1. describe each of the $\overrightarrow{e}_r$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_z$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using cylindrical coordinates and the orthonormal system of vectors $\overrightarrow{e}_r, \overrightarrow{e}_{\theta}, \overrightarrow{e}_z$
  1. describe each of the $\overrightarrow{e}_r$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_z$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)

Hi! ;)

We have the point $\overrightarrow r = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.
Its spherical coordinates are $(r,\theta,\phi)$.

At the point we want to have a local orthonormal basis aligned with spherical coordinates.
The vector $\overrightarrow{e}_r$ is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $r$.
That is in the direction of $\overrightarrow r$.
Normalizing to unit length, we get:
$$\overrightarrow{e}_r = \frac x r\overrightarrow{i} + \frac y r\overrightarrow{j} + \frac z r\overrightarrow{k}$$
Alternatively we can say that:
$$\overrightarrow{e}_r = \frac{\d {\overrightarrow r}{r}}{\left|\d {\overrightarrow r}{r}\right|}$$
(Nerd)

Next is $\overrightarrow{e}_{\theta}$, which is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $\theta$.
What would its direction be? (Wondering)
 
I like Serena said:
Next is $\overrightarrow{e}_{\theta}$, which is the unit vector with a direction that corresponds to how $\overrightarrow r$ changes if we increase $\theta$.
What would its direction be? (Wondering)

Is it $$\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\left|\d {\overrightarrow r}{\theta}\right|}$$ ?? (Wondering)

Do we have the following:

$$\overrightarrow{e}_{r}=(\cos \theta )\overrightarrow{i}+(\sin \theta )\overrightarrow{j} \\ \overrightarrow{e}_{\theta}=(-r \sin \theta )\overrightarrow{i}+(r \cos \theta )\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$ ?? (Wondering)

So using $$x=r \cos \theta , y=r \sin \theta , z=z$$ we have the following:

$$\overrightarrow{e}_{r}=\frac{x\overrightarrow{i}+y \overrightarrow{j}}{\sqrt{x^2+y^2}} \\ \overrightarrow{e}_{\theta}=-y\overrightarrow{i}+x\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$

Is this correct??
For the question 2. using 1. we have that $$\overrightarrow{e}_{\theta} \times \overrightarrow{j}=-y \overrightarrow{k}$$ right?? (Wondering)

But how could we show it geometrically?? (Wondering)
 
mathmari said:
Is it $$\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\left|\d {\overrightarrow r}{\theta}\right|}$$ ?? (Wondering)

Do we have the following:

$$\overrightarrow{e}_{r}=(\cos \theta )\overrightarrow{i}+(\sin \theta )\overrightarrow{j} \\ \overrightarrow{e}_{\theta}=(-r \sin \theta )\overrightarrow{i}+(r \cos \theta )\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$ ?? (Wondering)

So using $$x=r \cos \theta , y=r \sin \theta , z=z$$ we have the following:

$$\overrightarrow{e}_{r}=\frac{x\overrightarrow{i}+y \overrightarrow{j}}{\sqrt{x^2+y^2}} \\ \overrightarrow{e}_{\theta}=-y\overrightarrow{i}+x\overrightarrow{j} \\ \overrightarrow{e}_{z}=\overrightarrow{k}$$

For the question 2. using 1. we have that $$\overrightarrow{e}_{\theta} \times \overrightarrow{j}=-y \overrightarrow{k}$$ right?? (Wondering)

Is this correct??

Almost.
We still have to normalize $\overrightarrow{e}_{\theta}$ to unit length. (Wasntme)
But how could we show it geometrically?? (Wondering)

Did you make a drawing? (Wondering)
 
I like Serena said:
Almost.
We still have to normalize $\overrightarrow{e}_{\theta}$ to unit length. (Wasntme)

Is it $$\overrightarrow{e}_{\theta}=-sin \theta \overrightarrow{i}+\cos \theta \overrightarrow{j}$$ ?? (Wondering)
I like Serena said:
Did you make a drawing? (Wondering)

No... How could I do that?? (Wondering)
 
mathmari said:
Is it $$\overrightarrow{e}_{\theta}=-sin \theta \overrightarrow{i}+\cos \theta \overrightarrow{j}$$ ?? (Wondering)

Yep! (Nod)

No... How could I do that?? (Wondering)

Something like this:
CylindricalCoordinates_1001.gif
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top