MHB Dark Soul's question at Yahoo Answers (Laurent expansion)

AI Thread Summary
The discussion centers on expanding a given function into a Laurent series with a center at z = iota. The expansion is derived from the function f(z) = (z^3 - 2iota z^2) / (z - iota)^2, leading to a series valid for all z except z = iota. The region of convergence is established as 0 < |z - iota| < +∞, indicating it is valid in the annular region excluding the singularity at z = iota. The conversation also emphasizes the importance of correctly interpreting the problem statement. This detailed analysis aids in understanding the behavior of the function around its singularity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Expand the function in a Laurent series with center Z=Zo and determine the precise region of convergence.

(z^3 - (2 iota z^2) )
---------------------------- , Zo= iota
(z-iota)^2

Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dark Soul,

Denoting $u=z-z_0$ we get $$\frac{z^3-2z_0^2}{(z-z_0)^2}=\frac{(u+z_0)^3-2z_0^2}{u^2}=\frac{u^3+3u^2z_0+3uz_0^2+3z_0^3-2z_0^2}{u^2}\\=\frac{3z_0^3-2z_0^2}{u^2}+\frac{3z_0^2}{u}+3z_0+u=\frac{3z_0^3-2z_0^2}{(z-z_0)^2}+\frac{3z_0^2}{z-z_0}+3z_0+(z-z_0)$$ The Laurent expasion corresponds to a finite sum, so the expansion is valid for all $z\neq z_0$ (i.e. in $0<\left|z-z_0\right|<+\infty$).
 
Fernando Revilla said:
Here is the question:



Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]

Notice that the problem says: centered at $z=z_0.$
 
Fernando Revilla said:
Notice that the problem says: centered at $z=z_0.$

Serves me right for trying to find an easy solution without reading the question properly ><
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top