Dark Soul's question at Yahoo Answers (Laurent expansion)

Click For Summary

Discussion Overview

The discussion revolves around expanding a function into a Laurent series centered at \( z_0 = i \) and determining the region of convergence. The context includes mathematical reasoning and technical exploration of series expansion techniques.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the function to be expanded and provides a link to the original question for reference.
  • Another participant attempts to derive the Laurent series expansion by substituting \( u = z - z_0 \) and manipulating the expression, suggesting the expansion is valid for all \( z \neq z_0 \).
  • Further contributions reiterate the steps taken to derive the series, including differentiation and the use of power series, while noting the condition \( |z| > 1 \) for convergence.
  • There is a mention of the problem's requirement for centering at \( z = z_0 \), which prompts a participant to reflect on their initial approach and acknowledge a misunderstanding.

Areas of Agreement / Disagreement

Participants express various methods for deriving the Laurent series, but there is no consensus on the interpretation of convergence regions or the implications of the center point. The discussion remains unresolved regarding the precise conditions for convergence.

Contextual Notes

Some assumptions about the function's behavior near the singularity and the implications of the chosen center point are not fully explored, leaving potential gaps in understanding the convergence criteria.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Expand the function in a Laurent series with center Z=Zo and determine the precise region of convergence.

(z^3 - (2 iota z^2) )
---------------------------- , Zo= iota
(z-iota)^2

Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Dark Soul,

Denoting $u=z-z_0$ we get $$\frac{z^3-2z_0^2}{(z-z_0)^2}=\frac{(u+z_0)^3-2z_0^2}{u^2}=\frac{u^3+3u^2z_0+3uz_0^2+3z_0^3-2z_0^2}{u^2}\\=\frac{3z_0^3-2z_0^2}{u^2}+\frac{3z_0^2}{u}+3z_0+u=\frac{3z_0^3-2z_0^2}{(z-z_0)^2}+\frac{3z_0^2}{z-z_0}+3z_0+(z-z_0)$$ The Laurent expasion corresponds to a finite sum, so the expansion is valid for all $z\neq z_0$ (i.e. in $0<\left|z-z_0\right|<+\infty$).
 
Fernando Revilla said:
Here is the question:



Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]

Notice that the problem says: centered at $z=z_0.$
 
Fernando Revilla said:
Notice that the problem says: centered at $z=z_0.$

Serves me right for trying to find an easy solution without reading the question properly ><
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K