MHB Dark Soul's question at Yahoo Answers (Laurent expansion)

Click For Summary
The discussion centers on expanding a given function into a Laurent series with a center at z = iota. The expansion is derived from the function f(z) = (z^3 - 2iota z^2) / (z - iota)^2, leading to a series valid for all z except z = iota. The region of convergence is established as 0 < |z - iota| < +∞, indicating it is valid in the annular region excluding the singularity at z = iota. The conversation also emphasizes the importance of correctly interpreting the problem statement. This detailed analysis aids in understanding the behavior of the function around its singularity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Expand the function in a Laurent series with center Z=Zo and determine the precise region of convergence.

(z^3 - (2 iota z^2) )
---------------------------- , Zo= iota
(z-iota)^2

Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dark Soul,

Denoting $u=z-z_0$ we get $$\frac{z^3-2z_0^2}{(z-z_0)^2}=\frac{(u+z_0)^3-2z_0^2}{u^2}=\frac{u^3+3u^2z_0+3uz_0^2+3z_0^3-2z_0^2}{u^2}\\=\frac{3z_0^3-2z_0^2}{u^2}+\frac{3z_0^2}{u}+3z_0+u=\frac{3z_0^3-2z_0^2}{(z-z_0)^2}+\frac{3z_0^2}{z-z_0}+3z_0+(z-z_0)$$ The Laurent expasion corresponds to a finite sum, so the expansion is valid for all $z\neq z_0$ (i.e. in $0<\left|z-z_0\right|<+\infty$).
 
Fernando Revilla said:
Here is the question:



Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]

Notice that the problem says: centered at $z=z_0.$
 
Fernando Revilla said:
Notice that the problem says: centered at $z=z_0.$

Serves me right for trying to find an easy solution without reading the question properly ><