Dark Soul's question at Yahoo Answers (Laurent expansion)

Click For Summary
SUMMARY

The discussion focuses on expanding the function \( f(z) = \frac{z^3 - 2i z^2}{(z - i)^2} \) into a Laurent series centered at \( z_0 = i \). The expansion is derived using the substitution \( u = z - z_0 \) and results in a series valid for all \( z \neq z_0 \), specifically in the region \( 0 < |z - z_0| < +\infty \). The final expression includes terms that demonstrate the behavior of the function around the singularity at \( z = i \).

PREREQUISITES
  • Understanding of Laurent series and their applications in complex analysis.
  • Familiarity with complex functions and singularities.
  • Knowledge of differentiation and series expansion techniques.
  • Proficiency in manipulating complex numbers and algebraic expressions.
NEXT STEPS
  • Study the properties of Laurent series and their convergence regions.
  • Learn about singularities in complex functions and how they affect series expansions.
  • Explore differentiation techniques for complex functions, particularly in the context of series.
  • Investigate the implications of the residue theorem in relation to Laurent series.
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced calculus or mathematical physics will benefit from this discussion.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Expand the function in a Laurent series with center Z=Zo and determine the precise region of convergence.

(z^3 - (2 iota z^2) )
---------------------------- , Zo= iota
(z-iota)^2

Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Dark Soul,

Denoting $u=z-z_0$ we get $$\frac{z^3-2z_0^2}{(z-z_0)^2}=\frac{(u+z_0)^3-2z_0^2}{u^2}=\frac{u^3+3u^2z_0+3uz_0^2+3z_0^3-2z_0^2}{u^2}\\=\frac{3z_0^3-2z_0^2}{u^2}+\frac{3z_0^2}{u}+3z_0+u=\frac{3z_0^3-2z_0^2}{(z-z_0)^2}+\frac{3z_0^2}{z-z_0}+3z_0+(z-z_0)$$ The Laurent expasion corresponds to a finite sum, so the expansion is valid for all $z\neq z_0$ (i.e. in $0<\left|z-z_0\right|<+\infty$).
 
Fernando Revilla said:
Here is the question:



Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]

Notice that the problem says: centered at $z=z_0.$
 
Fernando Revilla said:
Notice that the problem says: centered at $z=z_0.$

Serves me right for trying to find an easy solution without reading the question properly ><
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K