MHB Dark Soul's question at Yahoo Answers (Laurent expansion)

AI Thread Summary
The discussion centers on expanding a given function into a Laurent series with a center at z = iota. The expansion is derived from the function f(z) = (z^3 - 2iota z^2) / (z - iota)^2, leading to a series valid for all z except z = iota. The region of convergence is established as 0 < |z - iota| < +∞, indicating it is valid in the annular region excluding the singularity at z = iota. The conversation also emphasizes the importance of correctly interpreting the problem statement. This detailed analysis aids in understanding the behavior of the function around its singularity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Expand the function in a Laurent series with center Z=Zo and determine the precise region of convergence.

(z^3 - (2 iota z^2) )
---------------------------- , Zo= iota
(z-iota)^2

Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dark Soul,

Denoting $u=z-z_0$ we get $$\frac{z^3-2z_0^2}{(z-z_0)^2}=\frac{(u+z_0)^3-2z_0^2}{u^2}=\frac{u^3+3u^2z_0+3uz_0^2+3z_0^3-2z_0^2}{u^2}\\=\frac{3z_0^3-2z_0^2}{u^2}+\frac{3z_0^2}{u}+3z_0+u=\frac{3z_0^3-2z_0^2}{(z-z_0)^2}+\frac{3z_0^2}{z-z_0}+3z_0+(z-z_0)$$ The Laurent expasion corresponds to a finite sum, so the expansion is valid for all $z\neq z_0$ (i.e. in $0<\left|z-z_0\right|<+\infty$).
 
Fernando Revilla said:
Here is the question:



Here is a link to the question:

Find Laurent series, please help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} f(z) &= \frac{z^3 - 2\iota \, z^2 }{ \left( z - \iota \right) ^2} \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left( \frac{1}{z - \iota} \right) \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \left( \frac{1}{ 1 - \frac{\iota}{z} } \right) \right] \\ &= - \left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \frac{1}{z} \sum_{n = 0}^{\infty} { \left( \frac{\iota}{z} \right) ^n } \right] \textrm{ provided } \left| \frac{\iota}{z} \right| < 1 \\ &= -\left( z^3 - 2\iota \, z^2 \right) \frac{d}{dz} \left[ \sum_{n = 0}^{\infty} \left( \frac{ \iota ^n}{ z^{n + 1} } \right) \right] \textrm{ provided } |z| > 1 \\ &= - \left( z^3 - 2\iota \, z^2 \right) \sum_{n = 0}^{\infty} \left[ \frac{ -\iota ^n \left( n + 1 \right) }{ z^{n+2} } \right] \\ &= \left( z - 2\iota \right) \sum_{n = 0}^{\infty} \left[ \frac{ \iota^n \left( n + 1 \right) }{ z^n } \right] \end{align*}[/math]

Notice that the problem says: centered at $z=z_0.$
 
Fernando Revilla said:
Notice that the problem says: centered at $z=z_0.$

Serves me right for trying to find an easy solution without reading the question properly ><
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top