MHB DE 19 t^3y'+4t^2y=e^{-t} y(-1)=1,t>0

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
#19
$t^3y'+4t^2y=e^{-t},\quad y(-1)=1,\quad t>0$
rewrite
$y'+\dfrac{4}{t}y=\dfrac{e^{-t}}{t^3}$
$u(t)=e^{\int 4/t \, dt}=e^{4\ln \left|t\right|}=t^4$first bold steps...
typos?
 

Attachments

  • DE.2.1.1.13-20.jpg
    DE.2.1.1.13-20.jpg
    23.1 KB · Views: 182
Physics news on Phys.org
It appears that you've correctly computed the integrating factor, which then gives you:

$$t^4y'+4t^3y=te^{-t}$$

$$\frac{d}{dt}(t^4y)=te^{-t}$$

Now integrate w.r.t \(t\) :)
 
MarkFL said:
It appears that you've correctly computed the integrating factor, which then gives you:

$$t^4y'+4t^3y=te^{-t}$$

$$\frac{d}{dt}(t^4y)=te^{-t}$$

Now integrate w.r.t \(t\) :)

$(t^4y)'=te^{-t}$
IBP$t^4y=-e^{-t}t-e^{-t}+C$
isolate y$y=\dfrac{-e^{-t}t}{t^4}-\dfrac{e^{-t}}{t^4}+C$$y(-1)=1$ so
$y(-1)=\cancel{\dfrac{e^{1}}{1}}-\cancel{\dfrac{e^{1}}{1}}+C=1$hopefully...
 
karush said:
$(t^4y)'=te^{-t}$
IBP$t^4y=-e^{-t}t-e^{-t}+C$
isolate y$y=\dfrac{-e^{-t}t}{t^4}-\dfrac{e^{-t}}{t^4}+C$$y(-1)=1$ so
$y(-1)=\cancel{\dfrac{e^{1}}{1}}-\cancel{\dfrac{e^{1}}{1}}+C=1$hopefully...
Yup.

-Dan
 
So now write down what the solution to the DE is and you're done.
 
karush said:
$(t^4y)'=te^{-t}$
IBP$t^4y=-e^{-t}t-e^{-t}+C$
isolate y$y=\dfrac{-e^{-t}t}{t^4}-\dfrac{e^{-t}}{t^4}+C$$y(-1)=1$ so
$y(-1)=\cancel{\dfrac{e^{1}}{1}}-\cancel{\dfrac{e^{1}}{1}}+C=1$hopefully...

When you isolated \(y\), why didn't you divide the parameter (constant of integration) by \(t^4\)? Also, the domain is \(t<0\) for #19. :)
 
So like this
$y=\dfrac{-e^{-t}t}{t^4}-\dfrac{e^{-t}}{t^4}+\dfrac{c}{t^4}$
$$y(-1)=\cancel{\dfrac{e^{1}}{1}}-\cancel{\dfrac{e^{1}}{1}}+\dfrac{c}{1}=1$$
 
I would likely have written:

$$t^4y=c_1-e^{-t}(t+1)$$

$$y(t)=\frac{c_1-e^{-t}(t+1)}{t^4}$$

And then:

$$y(-1)=c_1=1$$

Hence, the solution to the given IVP is:

$$y(t)=\frac{1-e^{-t}(t+1)}{t^4}$$
 

Attachments

  • Untitled69_20200426175428.png
    Untitled69_20200426175428.png
    30.7 KB · Views: 136
  • #10
karush said:
Here is the book answers

You incorrectly stated the initial value, so that's why the difference in the result I posted vs. that of the book.
 

Similar threads

Replies
9
Views
1K
Replies
10
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
5
Views
3K
Back
Top