Pardon the long delay in reply, I've been tied up with the holidays and family...
arkajad said:
...
There are no reasons to believe anything. Each believe is just a personal choice. Like choosing "we only need to know how to calculate numbers and nothing more".
Then you see no distinction between belief in voodoo and belief in atoms. There is so much wrong with this statement I don't know where to begin.
QM "pushes" some physicists and some philosphers into what you call "positivism", but some are more resistant than others. But even so, the "event" based model can calculate more than the posivitistic "don't ask questions, just calculate" model. So, also with a positivistic attitude you are behind.
Resistant or not, what you can calculate doesn't validate the identification of your calculus with "reality", especially when there exists multiple methods of calculation. Reality is not the mathematics it is the empirical assumptions which cannot be ignored. I can ignore your stochastic processes without any loss in the fidelity of the predictions of QM.
Well, Hilbert spaces, wave functions, operators, spacetime metrics, are also conceptual. So what?
So they are not "the reality" but our tools for calculating what does or may happen... and we err in forgetting this fact. (e.g. when we wonder about collapse (and the timing thereof) as if it were happening other than on paper or in the mind of the holder of the concept.)
They always come in pairs: collapse, event). We observe events. Collapses are in the Platonic part of the world. Nevertheless if you want to simulate events you need the collapses. Like in order to calculate orbits of planets you need to solve differential equations. Differential equations are in the Platonic world as well.
OMG you are a Platonist? No wonder...
You say "Platonic part of the world" I say "on paper". Are we just arguing semantics or do you actually believe there is a real universe of mathematical forms?
BTW we could calculate orbits prior to the development of differential calculus. We simply extended into the future the epicycle series matching prior observations. Of course the differential calculus is superior as it relates the behavior to e.g. the masses of the bodies and thus eliminating the infinite series of variables which must be determined empirically...
and yet again,
when you speak of "the time of the collapse" as if you can observe physical collapse, I ask "HOW?" Until then the "why QM does not take this into account" question lacks foundation.
"Random variables"? "External"? "noise"? Are these better or sharper terms? I strongly doubt.
I placed some of these terms in quotes, because they were common usage synonyms for the sharper ones. But YES "Random variable" has a specific sharp meaning, the symbol representing outcomes of a class of empirical events, specifically outcomes to which we can assign probabilities. And "External" has a perfectly well defined operational meaning. We can isolate a system from external effects without changing the system itself (as a class, i.e. defined by its spectrum of observables and degrees of freedom).
What is more important "external" and "noise" have distinct operational meanings. You can "externally" inject "noise" into a system and see the effect. What meaning is there for "collapse" except as a calculation procedure?
Right. You can collapse wave-function on paper and you can erase diffrential equation on paper. This will not destroy the planet's orbit.
Very good. That's progress. Now then you agree there is a "collapse on paper" but you seem to be saying there is also a "collapse in reality" which the paper process is representing. Correct?
You can play with density matrices, but they will not let you to understand and to simulate the observed behavior of a unique physical system. You may deliberately abandon that, you may decide "I don't need it, I don't care", but even in this case I am pretty sure that is a forced choice. You choose it because you do not know anything better than that. You even convince yourself that there can't be anything better. But what if there can be?
"anything better" is a value judgment. Let us establish the value judgment within which we work as physicists. I say "there can't be anything better" specifically in the context of the prediction of physical outcomes of experiments and observables. By what value system do you claim something that is "better"?
It is not so much my prejudice. It's my conscious choice.
A prejudice may or may not be a conscious choice. The point is that it is an
a priori judgment. Revisit it, and ask instead what is the justification for that judgment. I know a man who consciously ignores the evidence of evolution because it might undermine his faith in the literal "truth" of the bible. Are you doing the same w.r.t. density operators?
I keep bringing these up because, like using differential equations instead of epicycles, they provide more insight into what is mathematically necessary to predict physical events. What is excised by their use vs wave functions, must not
necessarily be a component of physical "reality". Most importantly one finds there is no distinction between a "quantum probability" vs a "classical probability" and so no distinction in the interpetation of their "collapse (on paper)". (which recall was the reason I brought them up to begin with.)
Well, it is like saying: when you speak of a function, you effectively speak about its integral. In a sense you are right, but knowing a function you can do with more than just computing one of its characteristics.
Yes you have more components to play with (like with epicycles you have more variables to tweak). The important point is that with the DO's you have
less yet no loss of predictive information. Thus the "more" you refer to is not linked or linkable to any empirical phenomena. Does it then still have physical meaning in your considered opinion?
This is one way. Now, try to go uniquely from your density matrix to the particular realization of the stochastic process. You know it can't be done. Therefore there is more potential information in the process than in the Markov semi-group equation.
Again see my point above... what utility does this procedure have if it does not change what one can empirically predict? (I do not deny it might have some utility but I call your attention to the nature of that utility if it does manifest.)
No, I don't have to. Like having a function I don't have to calculate it's integral. I can be more interested in its derivative, for example. Or I can modify its values on some interval.
Yes you can do what you like as a person but are you then doing physics or astrology? To express the maximal known information about a system in terms of usage common to the physics community you really really should use density operators as they are understood in that community.
Well, you are speaking about "our knowledge" while I am speaking about our attempts to understand the mechanism of formation of events. A mechanism that can lead us to another, perhaps even better mechanism, without random numbers at the start.
Then you are on a speculative quest. That is fine and good. But acknowledge that you speculate instead of declaring the orthodox to be "wrong". When you find that mechanism and can justify the superiority of believing the reality of it then come back.
Let me recall for you the thousands of amateur "theoriests" which post on the various blogs and forums about how "Einstein is wrong because I can predict what he predicts by invoking an aether". They justify their noisy insistent proclamations by saying they're "seeking a mechanism to explain"... an explanation is always in terms of other phenomena and when someone seeks to explain in terms of fundamentally unobservable phenomena there is no merit in it.
Yes I am a positivist when it comes to physics. Pure deduction can only link between prepositions, it cannot generate knowledge on its own. However too many times we find implicit hidden axioms in the logic of arguments about nature. Under further scrutiny we find those implicit axioms are chosen out of wish fulfillment to justify the desired conclusions. The only way to avoid this is to adhere to a positivistic discipline, stick to terms which either have operational meaning or explicitly mathematical meaning.
If one does not grant "reality status" to wave function in the form e.g. of Bhomian pilot waves then there is no need to explain collapse, it is explained already in the paper version in a simple trivially obvious way.
The chain of explanation must stop somewhere. it isn't "http://en.wikipedia.org/wiki/Turtles_all_the_way_down" ". I see that quantum mechanics is as it is
because it is the limit of our ability to explain in terms of more fundamental empirical phenomena. As the mathematician must eventually stop the chain of formal definition at the point of fundamental undefined terms so too the physicist must stop the chain of explanation at the point of fundamental unexplained phenomena. At that level physics must remain positivistic.