Undergrad Decoherence references and a question about the measurement problem

Click For Summary
SUMMARY

This discussion centers on the topic of decoherence in quantum mechanics, specifically seeking authoritative sources for understanding both intuitive and mathematical aspects. The consensus identifies "Decoherence and the Quantum-to-Classical Transition" by Schlosshauer as the primary reference for foundational knowledge, while "The Theory of Open Quantum Systems" by Breuer and Petruccione is recommended for applications. Additionally, the discussion raises a theoretical question about quantized probabilities in quantum mechanics and their implications for the measurement problem, noting the absence of a coherent model to address this query.

PREREQUISITES
  • Understanding of quantum mechanics principles
  • Familiarity with the concept of decoherence
  • Knowledge of open quantum systems
  • Basic mathematical proficiency in quantum theory
NEXT STEPS
  • Read "Decoherence and the Quantum-to-Classical Transition" by Schlosshauer
  • Study "The Theory of Open Quantum Systems" by Breuer and Petruccione
  • Explore Stephen L. Adler's paper "Why Decoherence has not Solved the Measurement Problem"
  • Investigate the implications of quantized probabilities in quantum mechanics
USEFUL FOR

Quantum physicists, researchers in quantum mechanics, and students seeking to deepen their understanding of decoherence and its role in the measurement problem.

msumm21
Messages
247
Reaction score
28
TL;DR
Questions on decoherence: references and a
Couple questions here.

1. What do you think is the best source to read about decoherence, both from an intuitive/high level pov, but also with mathematical details. I'd partially read a recommended paper by Schlosshauer a while back, is that still the bible for this?

2. If probabilities in quantum mechanics were themselves quantized (i.e. probabilities couldn't be any real number in [0,1] but had to be an integral multiple a some small number ##\epsilon##), would decoherence then solve the measurement problem? E.g. while interacting with "environments" potential measurement results would eventually have a probability below ##\epsilon## and hence vanish completely. All the probability would shift the single result measured. (Admittedly not sure if this makes sense--I either never got a good grasp of decoherence or I forgot it if I did.)
 
  • Like
Likes PeroK
Physics news on Phys.org
msumm21 said:
If probabilities in quantum mechanics were themselves quantized (i.e. probabilities couldn't be any real number in [0,1] but had to be an integral multiple a some small number ##\epsilon##)
I'm not sure anyone has ever proposed a coherent model with this property. So I don't know that questions about it are actually answerable since we don't have a model to use to answer them.
 
  • Like
Likes msumm21
msumm21 said:
Summary:: Questions on decoherence: references and a

Couple questions here.

1. What do you think is the best source to read about decoherence, both from an intuitive/high level pov, but also with mathematical details. I'd partially read a recommended paper by Schlosshauer a while back, is that still the bible for this?
Could this book be best suited for your needs?
https://www.springer.com/gp/book/9783540357735
 
  • Like
Likes msumm21, DrClaude and Demystifier
msumm21 said:
Summary:: Questions on decoherence: references and a

I'd partially read a recommended paper by Schlosshauer a while back, is that still the bible for this?
Now the bible is his book that @StevieTNZ linked above.
 
PeterDonis said:
I'm not sure anyone has ever proposed a coherent model with this property.
I've seen it in the many world context, as a technicality that helps to derive the Born rule.
 
msumm21 said:
What do you think is the best source to read about decoherence,...
To start with:
Stephen L. Adler: Why Decoherence has not Solved the Measurement Problem: A Response to P.W. Anderson
https://arxiv.org/abs/quant-ph/0112095v3
 
  • Like
Likes physika, msumm21, Demystifier and 1 other person
msumm21 said:
1. What do you think is the best source to read about decoherence, both from an intuitive/high level pov, but also with mathematical details. I'd partially read a recommended paper by Schlosshauer a while back, is that still the bible for this?
I think Schlosshauer's book is still the standard reference if one wants to learn about how decoherence is related to the quantum-to-classical transition.

Decoherence itself, however, is primarily a physical process in open quantum systems which has measureable consequences. Schlosshauer is only scratching the surface of this. A more comprehensive reference here is "The Theory of Open Quantum Systems" by Breuer and Petruccione.
 
  • Like
Likes dextercioby and msumm21
kith said:
I think Schlosshauer's book is still the standard reference if one wants to learn about how decoherence is related to the quantum-to-classical transition.

Decoherence itself, however, is primarily a physical process in open quantum systems which has measureable consequences. Schlosshauer is only scratching the surface of this. A more comprehensive reference here is "The Theory of Open Quantum Systems" by Breuer and Petruccione.
I would put it this way: Schlosshauer is mainly for foundations, Breuer and Petruccione is mainly for applications.
 
  • Like
Likes msumm21 and DrClaude

Similar threads

  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 72 ·
3
Replies
72
Views
9K
  • · Replies 76 ·
3
Replies
76
Views
8K
  • · Replies 27 ·
Replies
27
Views
4K