A Decomposing Rank-2 Tensors in Dirac's "General Theory of Relativity

  • A
  • Thread starter Thread starter Kostik
  • Start date Start date
  • Tags Tags
    Tensors
Click For Summary
Dirac's "General Theory of Relativity" states that a general rank-2 tensor can be decomposed into a sum of outer products, specifically expressed as T^{\mu\nu} = A^\mu B^\nu + A'^\mu B'^\nu + ... This concept is reiterated in the context of the covariant derivative, where Dirac emphasizes that a tensor T_{\mu\nu} can similarly be represented. The discussion explores whether this decomposition is obvious and seeks clarification on the notation used. A participant explains that by defining vectors A^\nu and B_\nu, the decomposition aligns with Dirac's definition of tensors. The conversation highlights the straightforward nature of this tensor decomposition while addressing LaTeX formatting issues.
Kostik
Messages
274
Reaction score
32
TL;DR
Dirac says that a general rank-2 tensor ## T^{\mu\nu} ## can be decomposed as ## A^\mu B^\nu + A'^\mu B'^\nu + A''^\mu B''^\nu + \cdots\, ##. Is this obvious?
Dirac's book "General Theory of Relativity" says on p. 2 that a general rank-2 tensor can be written as a sum of outer products: $$ T^{\mu\nu} = A^\mu B^\nu + A'^\mu B'^\nu + A''^\mu B''^\nu + \cdots $$ Importantly, he repeats this on p. 18, in developing the covariant derivative, where he mentions that a tensor ## T_{\mu\nu} ## is "expressible as a sum of terms like ## A_\mu B_\nu ##".

Is this obvious? Can someone show or explain this?
 
Last edited:
Physics news on Phys.org
Kostik said:
TL;DR Summary: Dirac says that a general rank-2 tensor can be decomposed: ##T^\mu\nu = A^\mu B^\nu + A'^\mu B'^\nu + A''^\mu B''^\nu + ...##. Is this obvious?

Dirac's book "General Theory of Relativity" says on p. 2 that a general rank-2 tensor can be written as a sum of outer products:

$$T^\mu\nu = A^\mu B^\nu + A'^\mu B'^\nu + A''^\mu B''^\nu + ...$$

Importantly, he repeats this on p. 18, in developing the covariant derivative, where he mentions that a tensor ##T_\mu\nu$ is "expressible as a sum of terms like $A_\muB_\nu##".

Is this obvious? Can someone show or explain this?
By definition, a tensor of rank two can be written as
$$
T = T^{\mu\nu} e_\mu \otimes e_\nu
$$
We can introduce the vectors ##A^\nu = T^{\mu\nu} e_\mu## and ##B_\nu = e_\nu## (note that here ##\nu## is being used as a counter rather than a component index) and therefore
$$
T = A^\nu \otimes B_\nu
$$
 
I'm not familiar with your notation, I wonder if Dirac's decomposition can be explained using only his definition of tensors.
 
Last edited:
Kostik said:
I added the missing braces, but the LaTex still doesn't seem to be working in the original post.
It's a known issue when you make the first post to use LaTeX (OP or reply) on a page. The parser doesn't get loaded until you refresh the page. Your LaTeX looks fine to me, and will look fine to you once you've hit refresh.
 
Ibix said:
It's a known issue when you make the first post to use LaTeX (OP or reply) on a page. The parser doesn't get loaded until you refresh the page. Your LaTeX looks fine to me, and will look fine to you once you've hit refresh.
Aha, yes, I see it now.
 
Oh, I think it's actually fairly straightforward. Write (showing the summation explicitly): $$T^{\mu\nu}=\sum_{\lambda,\kappa}T^{\lambda\kappa}{\delta_\lambda}^\mu{\delta_\kappa}^\nu \,\,\,\,\text{(no Einstein summation)}$$ Then ##A^\mu = T^{\lambda\kappa}{\delta_\lambda}^\mu## (not summed over ##\lambda##) and ##B^\nu={\delta_\kappa}^\nu##. (Regard ##\lambda## and ##\kappa## as fixed.) Since everything in sight is a tensor, the ##A^\mu## and ##B^\nu## are obviously vectors (no need to worry about constructing a non-vector).
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...