B Deep Space Speed Limit: What Prevents Exceeding Light Speed?

cmw
Messages
2
Reaction score
0
TL;DR Summary
Deep space speed limit
This is probably a dumb question. I'm not a physicist and took basic physics a very long time ago.

If an object was in deep space, a long way away from gravitational fields and was subjected to a constant 1g acceleration in a straight line what prevents it from eventually exceeding light speed (in approximately 356 days)? Velocity is only meaningful if measured relative to something else, but relative to the object, it is still traveling at an ever increasing speed. If an observer on earth watched the object what would they see?
Just curious.

Thanks,

Chris
 
Physics news on Phys.org
Nature itself prevents it. Objects under accelerating simply cannot exceed the speed of light. I can give you all the formulas and experiments supporting this, but at the end of the day it's simply that the way the universe works is such that no object can exceed the speed of light*.

cmw said:
Velocity is only meaningful if measured relative to something else, but relative to the object, it is still traveling at an ever increasing speed.
We can say that the object feels a constant acceleration, but we can't measure its velocity relative to itself.
cmw said:
If an observer on earth watched the object what would they see?
They would see the object continue to accelerate forever but with a decreasing acceleration over time such that the object never exceeds the speed of light. This reconciles with the observer on board the spacecraft who feels a constant, never decreasing acceleration when we include time dilation I believe.

*With the caveat that we are either talking about 'local' spacetime and not dealing with cosmological expansion, where the expansion of space can cause objects to recede from each other at any velocity, even FTL velocities. But these objects are not moving faster than a beam of light would locally.
 
  • Like
Likes vanhees71, Ibix and topsquark
cmw said:
TL;DR Summary: Deep space speed limit

If an object was in deep space, a long way away from gravitational fields and was subjected to a constant 1g acceleration in a straight line what prevents it from eventually exceeding light speed (in approximately 356 days)?
That isn’t how acceleration works. You are assuming that a constant acceleration produces a parabolic time vs position profile. However, it does not. A constant acceleration produces a hyperbolic profile. That hyperbola has an asymptote of c, so you never reach c (let alone exceed it).
 
  • Like
Likes russ_watters, vanhees71, Ibix and 3 others
cmw said:
If an object was in deep space, a long way away from gravitational fields and was subjected to a constant 1g acceleration in a straight line what prevents it from eventually exceeding light speed (in approximately 356 days)?
Google for “relativistic velocity addition”.

We have a rocket that is initially at rest relative to the earth. It fires its motors for one second and increases its speed from zero to 9.8 meters/second relative to the earth - that’s what accelerating at 1g means.

We can just as reasonably describe this situation as saying that the rocket is still at rest but the earth is moving backwards at 9.8 meters per second - to be more precise, we should say that the rocket is at rest relative to a hypothetical object that was already moving relative to the earth at 9.8 meters per second.

Now when the rocket fires its motors for another second it increases its speed relative to that hypothetical object from zero to 9.8 meters per second. But because of the way relativistic velocity addition works, its speed relative to the earth does not increase from 9.8 meters per second to 19.6 meters second, but instead to something less. That is, after two seconds the speed of the rocket relative to the earth is less than the sum of the speed of the rocket relative to the hypothetical object and the speed of the hypothetical object relative to the earth. If you work through the math in the relativistic velocity addition formula you will find that the speed of the rocket relative to the earth never exceeds ##c##.

The difference between straightforwardly adding the speeds and the correct relativistic formula for adding speeds is almost unnoticeable for speeds less than many thousands of kilometers per second - which is why we usually don’t notice it - but sufficiently sensitive measurements have been done and seen this effect. In fact, it was first detected by Fizeau a half-century before the discovery of relativity.
 
  • Like
Likes vanhees71, PeroK, Ibix and 3 others
Nugatory said:
Google for “relativistic velocity addition”.

We have a rocket that is initially at rest relative to the earth. It fires its motors for one second and increases its speed from zero to 9.8 meters/second relative to the earth - that’s what accelerating at 1g means.

We can just as reasonably describe this situation as saying that the rocket is still at rest but the earth is moving backwards at 9.8 meters per second - to be more precise, we should say that the rocket is at rest relative to a hypothetical object that was already moving relative to the earth at 9.8 meters per second.

Now when the rocket fires its motors for another second it increases its speed relative to that hypothetical object from zero to 9.8 meters per second. But because of the way relativistic velocity addition works, its speed relative to the earth does not increase from 9.8 meters per second to 19.6 meters second, but instead to something less. That is, after two seconds the speed of the rocket relative to the earth is less than the sum of the speed of the rocket relative to the hypothetical object and the speed of the hypothetical object relative to the earth. If you work through the math in the relativistic velocity addition formula you will find that the speed of the rocket relative to the earth never exceeds ##c##.

The difference between straightforwardly adding the speeds and the correct relativistic formula for adding speeds is almost unnoticeable for speeds less than many thousands of kilometers per second - which is why we usually don’t notice it - but sufficiently sensitive measurements have been done and seen this effect. In fact, it was first detected by Fizeau a half-century before the discovery of relativity.
Thanks I'll look into relativistic velocity addition.
 
cmw said:
Thanks I'll look into relativistic velocity addition.
You can also calculate the relationship between the "proper" acceleration of the object in its own rest frame (in this case a constant ##a = g##) and the acceleration measured in the original rest frame ( e.g. as measured on Earth). If we denote that acceleration as ##a'##, then we find that:$$a = \gamma^3 a'$$where$$\gamma = \frac{1}{\sqrt{1- v^2/c^2}}$$And you see that as the relative velocity ##v## increases towards ##c## the gamma factor (##\gamma##) increases without limit and the measured acceleration of the object reduces towards zero.

You don't need to go to deep space to test this equation. CERN and other particle accelerators routinely accelerate charged particles with huge proper acceleration and to very high energy and yet never to or beyond ##c##.

In fact, the total energy of a particle of mass ##m## is given by:$$E = \gamma mc^2$$And again you can see that as ##v## approaches ##c## the energy of the particle increases without limit. In other words, no matter how much energy you give a particle its speed never actually reaches ##c##.
 
Last edited:
  • Like
Likes cmw, vanhees71 and Dale
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...

Similar threads

Back
Top