Define a Dedekind cut and show the given set is(n't) a Dedekind cut

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Cut Set
Click For Summary
SUMMARY

A Dedekind cut is defined as a proper subset ##L \subset \mathbb{Q}## that has no maximal element and satisfies the property that for all ##a, b \in \mathbb{Q}##, if ##a < b## and ##b \in L##, then ##a \in L##. The set ##P = \{x^4 | x \in L\}## is determined to be not a Dedekind cut due to failing the third property, while the set ##M = \{23x | x \in L\}## is confirmed to be a Dedekind cut as it meets all required conditions. The discussion highlights the importance of correctly applying the properties of Dedekind cuts in mathematical proofs.

PREREQUISITES
  • Understanding of Dedekind cuts in the context of rational numbers.
  • Familiarity with mathematical logic and set theory.
  • Knowledge of properties of real numbers and their subsets.
  • Ability to manipulate inequalities and perform algebraic operations.
NEXT STEPS
  • Study the properties of Dedekind cuts in greater detail.
  • Learn about the implications of proper subsets in set theory.
  • Explore examples of Dedekind cuts beyond rational numbers.
  • Investigate the relationship between algebraic operations and set properties.
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced set theory and the properties of rational numbers will benefit from this discussion.

docnet
Messages
796
Reaction score
486
Homework Statement
a) What is a Dedekind cut? Give the precise definition.

b) Let ##L## be a Dedekind cut. Is ##P=\{x^4|x\in L\}## a Dedekind cut?

c) Let ##L## be a Dedekind cut. Is ##P=\{23x|x\in L\}## a Dedekind cut?
Relevant Equations
##\mathbb{Q}##
a) a subset ##L\subset \mathbb{Q}## is a Dedekind cut if ##L## is proper, ##L## has no maximal element, and
$$\forall a,b\in \mathbb{Q}, [(a<b)\land( b\in L)\Longrightarrow a\in L]$$

b)
Is ##P=\{x^4|x\in L\}## a Dedekind cut?

P is proper:
$$(a\in L)\Longrightarrow (a^4\in P)\Longrightarrow P\neq \emptyset$$ $$(-1\in \mathbb{Q})\land (-1\notin P)\Longrightarrow P\neq \mathbb{Q}$$ So ##P## is a proper set.

P has no maximal element:
$$(\forall x \in L, x<d)\Longrightarrow( \forall x^4 \in P, x^4<d^4)$$ So ##P## has no maximal element.

P does not satisfy the 3rd property:
$$(-1\in \mathbb{Q})\land (a^4 \in P)\land(-1<a^4)\land (-1\notin P)$$ So ##P## is not a Dedekind cut.c)
Is ##M=\{23x|x\in L\}## a Dedekind cut?

M is proper:
$$(x\in L)\Longrightarrow (23x \in M)\Longrightarrow M\neq \emptyset$$ $$(L\neq \mathbb{Q})\Longrightarrow (d\notin L\quad \text{for some}\quad d\in\mathbb{Q})$$ $$\Longrightarrow( \mathbb{Q}\ni 23d\notin M)\Longrightarrow (M\neq \mathbb{Q})$$ So ##M## is a proper set.

M has no maximal element:
$$(\forall x\in L, x<d)\Longrightarrow (\forall 23x \in P, 23x<23d)$$ So ##M## has no maximal element.

M satisfies the 3rd property:
##L## satisfies the 3rd property, so $$\forall a,b\in \mathbb{Q}, [(a<b)\land( b\in L)\Longrightarrow a\in L]$$ Multiplying the ##a##s and ##b##s by ##23## leads to $$\forall 23a, 23b\in \mathbb{Q}, [(23a<23b)\land (23b\in M) \Longrightarrow 23a\in M]$$
##M## is a Dedekind cut.
 
Last edited:
Physics news on Phys.org
You received no response since you asked no question, but if you want checking of your work, then in b, the argument for no maximal element contains a false claim, i.e. one can. have a<b but b^4< a^4, if a and b are negative.

In part c, the argument that the 3rd property holds is phrased incorrectly. namely one should assume that b is in L and a < 23b, then show a is in M.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
20
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
11K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
3K