Showing ##\sqrt{2}\in\Bbb{R}## using Dedekind cuts

  • #1
317
26
1. The problem statement, all variables and given
Prove that ##\sqrt{2}\in\Bbb{R}## by showing ##x\cdot x=2## where ##x=A\vert B## is the cut in ##\Bbb{Q}## such that ##A=\{r\in\Bbb{Q}\quad \vert \quad r\leq 0 \quad\lor\quad r^2\lt 2\}##.

I believe that I have to show ##A^2=L## however, it seems that ##L\nsubseteq A^2##. What am I doing wrong?

Homework Equations


Let ##r^*## denote the cut of ##r\in \Bbb{R}##.

The Attempt at a Solution


By definition of multiplying cuts, if ##x=A\vert B##, then ##x\cdot x## is ##A^2\vert F## such that ##A^2=\{r\in\Bbb{Q}\quad \vert \quad r\leq 0\quad \lor \quad \exists a,a'\in A(r=aa' \land a,a'\gt 0)\}##. Note that ##2^*=L \vert U=\{q\in\Bbb{Q}\vert q\lt 2\}\vert\{q\in\Bbb{Q}\vert 2\leq q\}##. If ##x\in A^2##, then either ##x\leq 0## or ##x\geq 0##. Suppose ##x\geq 0##, then ##\exists ]alpha,\alpha'\in A## s.t. ##x=\alpha\alpha'## and ##\alpha,\alpha'\gt 0##. Keep in mind that ##\alpha,\alpha'\in A## means that ##\alpha^2,(\alpha')^2<2## so ##\alpha^2(\alpha')^2<4 \Longrightarrow \alpha\alpha'\lt 2##. Thus, ##x^2 \lt 2## which implies ##x\in L##. On the other hand, if ##x\leq 0##, then clearly, ##x\in L##. In all cases, ##A^2\subseteq L##.
 

Answers and Replies

  • #2
verty
Homework Helper
2,164
198
I'm thinking you have to show that every member of ##A^2 < 2##. Are you able to do that? I would give a hint but I think this already is.
 
  • #3
mathwonk
Science Advisor
Homework Helper
2020 Award
11,113
1,317
if you want what i think is a nicer approach, the cauchy sequences approach due to cantor, it is in fundamentals of real analysis by sterling berberian. if you want to stick with the dedekind approach, i suggest you make things easier on yourself and consider only cuts of the positive rationals, where you can just assume the lower part of the square of a (positive) cut consists of the squares of the elements in the lower part of the original cut.
 
  • Like
Likes Terrell and fresh_42
  • #4
317
26
I'm thinking you have to show that every member of ##A^2 < 2##. Are you able to do that? I would give a hint but I think this already is.
I believe I did, then concluded with ##A^2\subseteq L##. I'm having trouble with ##L\subseteq A^2##. Since defining ##L## as the cut of ##2##, ##L=\{q\in\Bbb{Q}:q<2\}## meant ##3/2\in L##, but ##3/2\notin A^2##. Thanks!
 
  • #5
317
26
i suggest you make things easier on yourself and consider only cuts of the positive rationals, where you can just assume the lower part of the square of a (positive) cut consists of the squares of the elements in the lower part of the original cut.
I believe this is the approach I took. Thank you.
 
  • #6
317
26
Is it correct that the l.u.b. of ##A^2## is ##4##? Which would let me argue that ##\{a\in\Bbb{Q}:q\lt 2\}\subseteq A^2##?
 
  • #7
verty
Homework Helper
2,164
198
I believe I did, then concluded with ##A^2\subseteq L##. I'm having trouble with ##L\subseteq A^2##. Since defining ##L## as the cut of ##2##, ##L=\{q\in\Bbb{Q}:q<2\}## meant ##3/2\in L##, but ##3/2\notin A^2##. Thanks!

Sorry, I think this is more complicated than I expected. But regarding ##3 \over 2##, ##{3 \over 2} = {9 \over 8} \times {4 \over 3}##.
 
  • #8
317
26
Sorry, I think this is more complicated than I expected. But regarding ##3 \over 2##, ##{3 \over 2} = {9 \over 8} \times {4 \over 3}##.
But ##3/2## cannot be in ##A^2##, right?
 
  • #9
verty
Homework Helper
2,164
198
But ##3/2## cannot be in ##A^2##, right?

##{9 \over 8}## is in A and ##{4 \over 3}## is in A, therefore ##{3 \over 2} = {9 \over 8} \times {4 \over 3}## is in ##A^2##. I don't yet know how to turn this idea into a proof. It seems difficult to select the right numbers.

PS. It seems you should be able to assume that cuts have the least upper bound property because that is usually proven before multiplication is defined.
 
Last edited:
  • #10
317
26
9898{9 \over 8} is in A and 4343{4 \over 3} is in A, therefore 32=98×4332=98×43{3 \over 2} = {9 \over 8} \times {4 \over 3} is in A2
Right. I should have tried with a calculator.
It seems difficult to select the right numbers.
It's where I am having difficulty too.
Also, the book hinted that I can use the following to solve the problem. Though, I haven't figured how to use it.
hint,pugh.png
 

Attachments

  • hint,pugh.png
    hint,pugh.png
    8.2 KB · Views: 133

Related Threads on Showing ##\sqrt{2}\in\Bbb{R}## using Dedekind cuts

  • Last Post
Replies
1
Views
1K
Replies
1
Views
1K
  • Last Post
Replies
0
Views
832
  • Last Post
Replies
9
Views
4K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
787
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
4K
Replies
4
Views
1K
Top