Define and measure inhomogenities and anisotropies

  • Context: Graduate 
  • Thread starter Thread starter tom.stoer
  • Start date Start date
  • Tags Tags
    Measure
Click For Summary
SUMMARY

The forum discussion centers on defining and measuring inhomogeneities and anisotropies in cosmology, particularly in the context of general relativity (GR). Participants highlight the challenges of mathematically defining mass, momentum, and angular momentum in non-asymptotically flat spacetimes, noting that existing definitions like Komar mass are insufficient. The conversation emphasizes the need for a clear mathematical framework to quantify these concepts, especially given the reliance on light-like data from sources such as the Cosmic Microwave Background (CMB). Recent literature suggests that the scale for homogeneity and isotropy may need to be revised from 100 Mpc to 120 Mpc, reflecting the complexities of cosmic structures.

PREREQUISITES
  • Understanding of general relativity (GR) and its implications for cosmology
  • Familiarity with the concepts of mass, momentum, and angular momentum in GR
  • Knowledge of the Cosmic Microwave Background (CMB) and its significance in cosmological studies
  • Basic grasp of mathematical integration in the context of spacetime metrics
NEXT STEPS
  • Research the implications of Komar mass and its limitations in non-asymptotically flat spacetimes
  • Explore the mathematical definitions of mass and energy-momentum densities in general relativity
  • Investigate recent studies on large-scale structures in cosmology, particularly those suggesting revised scales for homogeneity
  • Examine the role of perturbation theory in analyzing anisotropies in cosmological models
USEFUL FOR

Astronomers, cosmologists, and theoretical physicists interested in the mathematical foundations of cosmological models, particularly those studying the implications of inhomogeneities and anisotropies in the universe.

tom.stoer
Science Advisor
Messages
5,774
Reaction score
174
The cosmological principle says that on large scales the universe is homogeneous and isotropic. Therefore there should be a way to define and measure inhomogenities and anisotropies.

Regarding the definition I see the following problem:

Usually we would like to define

##M=\int_V dV\,\mu##
##P^i=\int_V dV\,\pi^i##
##L^i=\int_V dV\,\lambda^i##

and

##\bar{\mu} = \frac{M}{V}##
##\tilde{\mu}=\mu-\bar{\mu}##
...

But we know that these integrals cannot be defined mathematically for arbitrary spacetimes (not asymptotically flat, ...) For the mass we have some definitions like Komar mass, for momentum and angular momentum it becomes even more complicated.

So how do we define inhomogenities and anisotropies mathematically?

A related problem is the definition of "large scales ...". What does that mean exactly? How would one classify and distinguish self-similar/ fractal-like / scale-free structures (with voids of every size)?

Having a mathematical definition at hand the problem is to measure it. Obviously we do not have data on a space-like section, but light rays (from galaxies and CMB). Therefore an appropriate definition should be based on light-like data samples.

The next question is whether we have data analysis for inhomogenities (fluctuations in mass or energy density, ...) and for anisotropies (fluctuations in momentum and angular momentum density, polarization, ...)

A remark regarding CMB and Planck data: of course they tell us something about inhomogenities - but only for a very special data set, namely the visible celestial sphere centered at the earth. As indicated by the integrals mentioned above I would like to have a more general definition using e.g. arbitrary volumes. I think this is not possible based on CMB.
 
Last edited:
Space news on Phys.org
this is an interesting topic, for a long time I considered 100 Mpc to be a value for a homogenous and isotropic scale. However recent papers with regards to unusual large scale structures have indicated that a larger scale is needed. Last one I read indicated 120 Mpc. Essentially the scale needed is simply on where homogenous and isotropy is achieved with the averages I mentioned above. However some regions can be thus defined with smaller or larger scales, depending on distribution.

As far as a mathematical definition, it would depend on the average distribution, desired scale and what you are modelling I would think.

to expand on that, take your lawn and the blade of grass distribution if your lawn is evenly distributed ie a good green lawn with no dead spots the scale would be much smaller than a lawn that is poorly cared for. Essentially its when you can obtain a decent, statistical average distribution.
 
Last edited:
A real problem is defining the range space. The easy approach is to model it as an indefinite integral.
 
Mordred said:
As far as a mathematical definition, it would depend on the average distribution, desired scale and what you are modelling I would think.

Chronos said:
A real problem is defining the range space. The easy approach is to model it as an indefinite integral.
Can you please elaborate?

Afaik there is no natural expression for a scalar mass density in GR in general. Therefore there is no scalar mass defined via a volume integral. All expressions I know are restricted to stationary or asymptotically flat spacetimes

http://en.wikipedia.org/wiki/Mass_in_general_relativity

So there is no definition of mass in realistic cosmological models, and therefore there is no definition for its inhomogenities, either.

Looking at 4-momentum (especially energy) or angular momentum is problematic as well. The integral

##\int_V dV\,T^{00}##

has no well-defined transformation properties. Using a (timelike) Killing vector field one could define

##Q^\mu[\xi] = \int_V dV\,T^{\mu\nu}\,\xi_\nu##

but for realistic models there is no such Killing vector field.

So there is no definition of energy, momentum (and angular momentum) in realistic cosmological models, and therefore there is no definition for its inhomogenities, either. All expressions I know are again valid only for spacetimes with special symmetries (the Kiling vector fields) or are quasi-local expressions using surface integrals (like Hawking energy) which are not applicable in this context.

Now even if there would be such expressions based on local densities, the problem is to relate them to observations. All these expressions use some kind of space-like slicing, but our observations are based on null-lines. So one would have to introduce something like "retarded" density

##\mu(r) \;\to\; \mu_\text{red}(r) = \mu(r-ct(r))##

where t is the (unknown!) light propagation time from r to 0 in an (unknown!) background geometry.
 
Last edited:
As far as modelling anisotropic models there have been countless examples if one looks for them.

here is some examples from a quick search.

http://arxiv.org/abs/gr-qc/0412078
http://iopscience.iop.org/0067-0049/148/1/175
http://link.springer.com/article/10.1007/s10773-006-9089-0#page-1
http://arxiv.org/abs/gr-qc/0308059
http://iopscience.iop.org/0004-637X/643/2/616
http://www.worldscientific.com/doi/abs/10.1142/S0218271803003761
http://iopscience.iop.org/1538-4357/545/1/L5
http://www.jetp.ac.ru/cgi-bin/dn/e_037_05_0739.pdf
http://prl.aps.org/abstract/PRL/v102/i11/e111301
http://arxiv.org/abs/gr-qc/0304078
http://arxiv.org/abs/1212.3569
http://arxiv.org/abs/0712.2291

keep in mind some of the articles I posted are controversial but they do show examples of modelling anisotropy

edit just saw your post as I was posting mine I'll have to give the above some thought I have seen examples of anistropic GR models but will have to dig them up assuming I can find them and assuming that is what your looking for
 
Last edited:
Thanks.

I know how to model or construct anisotropic universes.

My question is how to extract information regarding anisotropies from a general spacetime which is not explicitly known. The idea is to use quantities like mass or energy-momentum (densities) and to calculate a measure for anisotropies.

But due to the above mentioned obstacles I do not see how this could work in principle.
 
Tom, I agree. There is no known realistic way to model volumes in GR - nor energy content.
 
Chronos said:
Tom, I agree. There is no known realistic way to model volumes in GR - nor energy content.
So does that mean we cannot define a measure for anisotropies? Not even in principle? Or are there other expressions I am not aware of?
 
  • #10
tom.stoer said:
Thanks.

I know how to model or construct anisotropic universes.

My question is how to extract information regarding anisotropies from a general spacetime which is not explicitly known. The idea is to use quantities like mass or energy-momentum (densities) and to calculate a measure for anisotropies.

But due to the above mentioned obstacles I do not see how this could work in principle.
I don't think this is possible to do. The very idea of "anisotropies" involves imagining you have some base space-time, and the anisotropies are deviations from that base. If you don't nail down what you mean by the base space-time, there is no way to determine which parts you're seeing are the anisotropies.
 
  • #11
Chalnoth said:
I don't think this is possible to do. The very idea of "anisotropies" involves imagining you have some base space-time, and the anisotropies are deviations from that base. If you don't nail down what you mean by the base space-time, there is no way to determine which parts you're seeing are the anisotropies.
I tend to agree, but this is horrible.

- we start with the cosmological principle = zero anisotropies
- we believe that (beyond a certain scale) anisotropies will be neglectable
- we definitely observe anisotropies (galaxies, clusters, voids, CMB, ...)
but the discussion shows that we are not able to define anisotropies mathematically, and that we are therefore not able to check quantitatively (!) whether the observed anisotropies violate the cosmological principle and to which extent

I would say this is not science
 
  • #13
Thanks a lot.

This was not precisely what I was looking for, but it seems that at least with my questions I am on the right track. It seems to make to use a background metric and calculate deviations from this background in perturbation theory. The anisotropies are not measured by directly calculating averages, but by the convergence of the approximations.

Next question would be how relate Wald's formalism to averaging and to observations.
 
  • #14
  • #15
tom.stoer said:
I tend to agree, but this is horrible.

- we start with the cosmological principle = zero anisotropies
- we believe that (beyond a certain scale) anisotropies will be neglectable
- we definitely observe anisotropies (galaxies, clusters, voids, CMB, ...)
but the discussion shows that we are not able to define anisotropies mathematically, and that we are therefore not able to check quantitatively (!) whether the observed anisotropies violate the cosmological principle and to which extent

I would say this is not science
Nah, it's not a big deal.

First, it is perfectly valid to take a parameterization for the base, and then carefully work through the results of what happens when you have perturbations from that base. It is very true that the choice of base space-time is arbitrary, but the results won't match up if that choice is a bad one.

It's worth pointing out that many people have suspected that subtle errors in how we handle anisotropies are the reason why we've measured an accelerated expansion. This was very much a valid line of inquiry, but it has come up empty. The only way for anisotropies to explain our observations is if we live almost identically in the center of a massive void. But this possibility is ruled out by detailed observations anyway. See here:
http://arxiv.org/abs/1007.3725
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K