MHB Define Sets $\{x,y\}$ and $x \cup y$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wave)

If $x \neq y $, define the sets $\bigcup \langle x,y \rangle , \bigcup \bigcup \langle x,y \rangle$.

According to my notes, it is like that:

$$\langle x,y \rangle= \{ \{x\}, \{x,y\} \} $$

$$ \bigcup \langle x,y \rangle=\{x,y\} $$

$$ \bigcup \bigcup \langle x,y \rangle=x \cup y$$

Why is it $ \bigcup \bigcup \langle x,y \rangle=x \cup y$ and not $\bigcup \bigcup \langle x,y \rangle=\{x,y\}$ ? (Thinking)
 
Physics news on Phys.org
It follows from the definition of generalized union that $\bigcup\{A_1,\dots,A_n\}=A_1\cup\dots\cup A_n$. I would claim that this equality is the idea behind the definition of the generalized union, and this definition is a generalization to the case when the set is not necessarily finite.
 
Evgeny.Makarov said:
It follows from the definition of generalized union that $\bigcup\{A_1,\dots,A_n\}=A_1\cup\dots\cup A_n$. I would claim that this equality is the idea behind the definition of the generalized union, and this definition is a generalization to the case when the set is not necessarily finite.

I understand..Thank you very much! (Smile)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top