MHB Defining & Proving Modulo Multiplication in $\mathbb{Z}_k$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Multiplication
AI Thread Summary
The discussion focuses on defining multiplication in the modular arithmetic system $\mathbb{Z}_k$ using an inductive approach. The proposed definition states that for non-negative integers, multiplication is defined as $x \cdot_k 0 = 0$ and $x \cdot_k (y+1) = x \cdot_k y +_k x$. Participants explore the validity of proving the equivalence $(x \cdot y) \mod k = (x \mod k) \cdot_k (y \mod k)$ through induction, questioning whether to apply induction on $y$. The base case and inductive step are outlined, demonstrating that both sides of the equation are equal under the defined operations. The conversation emphasizes the need for a clear inductive definition before proceeding with proofs.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Based on the definition of $+_k$, I want to give an inductive definition for the multiplication $\cdot_k$ in $\mathbb{Z}_k$, such that for all $x\in \mathbb{N}_0$ and $y\in \mathbb{N}_0$ it holds that $$x\cdot_k y=(x\cdot y)\mod k$$

What is an inductive definition? (Wondering)

Do we write $x\cdot y=y+y+\ldots +y$ ($n$-times) and we apply each time the addition $+_k$ ? (Wondering)
I want to prove also by induction that for a $x\in \mathbb{N}_0$ it holds for all $y\in \mathbb{N}_0$ that $$(x\cdot y)\mod k=(x\mod k)\cdot_k (y\mod k)$$

We apply the induction on $y$ or not? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
I want to prove also by induction that for a $x\in \mathbb{N}_0$ it holds for all $y\in \mathbb{N}_0$ that $$(x\cdot y)\mod k=(x\mod k)\cdot_k (y\mod k)$$

We apply the induction on $y$ or not? (Wondering)

Is the induction as follows? Base case: $y=1$ : $$(x\cdot 1)\mod k=x\mod k$$ The other side is $$ (x\mod k)\cdot_k (1\mod k)=(x\mod k)\cdot_k 1=x\mod k$$ So, they are equal. Inductive Hypothesis: We suppose that it holds for $y=n$ : $$(x\cdot n)\mod k=(x\mod k)\cdot_k(n\mod k)$$ Inductive step: We will show that it holds for $y=n+1$ : $$(x\cdot (n+1))\mod k=(x\cdot n+x)\mod k=(x\cdot n)\mod k+x\mod k \ \ \overset{\text{ Inductive Hypothesis } }{ = } \ \ (x\mod k)\cdot_k (n\mod k)+x\mod k$$ The other side is $$(x\mod k)\cdot_k ((n+1)\mod k)=(x\mod k)\cdot_k (n\mod k+1)\\ =(x\mod k)\cdot_k (n\mod k)+x\mod k$$ So, they are equal.

Is this correct? Could I improve something? (Wondering)
 
Last edited by a moderator:
mathmari said:
What is an inductive definition?
Is there a reason why you can't look this up in your lecture notes or textbook? Or see Wikipedia.

mathmari said:
Do we write $x\cdot y=y+y+\ldots +y$ ($n$-times) and we apply each time the addition $+_k$ ?
No inductive definition uses ellipsis.

mathmari said:
Is the induction as follows?
Until there is a definition, it makes no sense to prove anything.
 
An inductive definition for the multiplication $\cdot_k$ in $\mathbb{Z}_k$ is the following:
\begin{align*}&x\cdot_k 0=0 \\ &x\cdot_k (y+1)=x\cdot_k y+_kx, \ y\geq 0\end{align*}
right? (Wondering)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top