MHB Defining & Proving Modulo Multiplication in $\mathbb{Z}_k$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Multiplication
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Based on the definition of $+_k$, I want to give an inductive definition for the multiplication $\cdot_k$ in $\mathbb{Z}_k$, such that for all $x\in \mathbb{N}_0$ and $y\in \mathbb{N}_0$ it holds that $$x\cdot_k y=(x\cdot y)\mod k$$

What is an inductive definition? (Wondering)

Do we write $x\cdot y=y+y+\ldots +y$ ($n$-times) and we apply each time the addition $+_k$ ? (Wondering)
I want to prove also by induction that for a $x\in \mathbb{N}_0$ it holds for all $y\in \mathbb{N}_0$ that $$(x\cdot y)\mod k=(x\mod k)\cdot_k (y\mod k)$$

We apply the induction on $y$ or not? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
I want to prove also by induction that for a $x\in \mathbb{N}_0$ it holds for all $y\in \mathbb{N}_0$ that $$(x\cdot y)\mod k=(x\mod k)\cdot_k (y\mod k)$$

We apply the induction on $y$ or not? (Wondering)

Is the induction as follows? Base case: $y=1$ : $$(x\cdot 1)\mod k=x\mod k$$ The other side is $$ (x\mod k)\cdot_k (1\mod k)=(x\mod k)\cdot_k 1=x\mod k$$ So, they are equal. Inductive Hypothesis: We suppose that it holds for $y=n$ : $$(x\cdot n)\mod k=(x\mod k)\cdot_k(n\mod k)$$ Inductive step: We will show that it holds for $y=n+1$ : $$(x\cdot (n+1))\mod k=(x\cdot n+x)\mod k=(x\cdot n)\mod k+x\mod k \ \ \overset{\text{ Inductive Hypothesis } }{ = } \ \ (x\mod k)\cdot_k (n\mod k)+x\mod k$$ The other side is $$(x\mod k)\cdot_k ((n+1)\mod k)=(x\mod k)\cdot_k (n\mod k+1)\\ =(x\mod k)\cdot_k (n\mod k)+x\mod k$$ So, they are equal.

Is this correct? Could I improve something? (Wondering)
 
Last edited by a moderator:
mathmari said:
What is an inductive definition?
Is there a reason why you can't look this up in your lecture notes or textbook? Or see Wikipedia.

mathmari said:
Do we write $x\cdot y=y+y+\ldots +y$ ($n$-times) and we apply each time the addition $+_k$ ?
No inductive definition uses ellipsis.

mathmari said:
Is the induction as follows?
Until there is a definition, it makes no sense to prove anything.
 
An inductive definition for the multiplication $\cdot_k$ in $\mathbb{Z}_k$ is the following:
\begin{align*}&x\cdot_k 0=0 \\ &x\cdot_k (y+1)=x\cdot_k y+_kx, \ y\geq 0\end{align*}
right? (Wondering)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top