https://en.wikipedia.org/wiki/Alphabet_(formal_languages)
Mark44 said:
But pressure is force per unit area, and force is a vector quantity, with direction.
If I stand on a scale, I am exerting a downward force whose magnitude is mg. From this I can calculate the pressure on the surface of the scale. The scale is exerting a force against me, upward, so we could talk about the pressure of the scale on my feet. I'll grant you that people don't usually talk about pressure in these terms, but the two forces here are oppositely directed, so one of the pressures would be positive and the other negative, it seems to me.
You're saying, "pressure in a direction is like speed in a direction." It's not a vector simply by definition. To wit: "Pressure is a
scalar quantity..." and "It is incorrect (although rather usual) to say 'the pressure is directed in such or such direction'. The pressure, as a scalar, has no direction." (See
https://en.wikipedia.org/wiki/Pressure). I understand your intuitive attempt to make it a vector in the same direction as the force on the surface, however, it's kind of like trying to say that temperature has direction between the particles which form the basis of the statistical measure have direction. Kind of an important conceptual distinction.
In relation to the reals as a foundation for a vector space, I can see why it's appealing to try to equate them and blur over the distinction, but doing so avoids the general purpose of drawing a distinction and that is scalars are the alphabet whereas vectors are the units for the basis (See
https://en.wikipedia.org/wiki/Alphabet_(formal_languages)), and vectors are constructed from them. Are letters the same as words? Do we say that digits are the same as numbers? Nope. Digits are used to build a number system. That's the important point to draw from the difference in terminology, even if we just consider the reals, they are used to create a system of infinitely extensible vectors, and are of a different type. I think intuitively the OP wanted to know WHY everyone keeps saying "they're ALMOST the same thing" and no one drew the distinction. One of the goals of undergraduate math is to get the student acclimated to the ability to work with formal systems (See
https://en.wikipedia.org/wiki/Formal_system) of all the theories of math, be they number theory, Galois theory, etc.
EDIT: Sorry, I churned that out quickly, and I probably should have restated a few points:
1) If you EXPLICITLY respond to a question three times, and the person asks a fourth time, then it should cast doubt whether you actually answered the question, shouldn't it? :D
2) Scalars are not ESSENTIALLY the same thing as as 1-D vectors, any more than the digits 0-9 are the same as quantities 0-9 even though they are written almost the same, not because they both can't be used for the same process of calculation, (sure they can) but because the ideas behind them are very different, and separate an understanding of numbers from a mere manipulation of them. Calculators can add 1 + 1, but humans can reason about the NATURE of 1 + 1. Failure to differentiate conceptually leads to understandable but invalid conclusions. (See pressure being a scalar above.)
3) Would you tell a student axioms are the same as theorems? I mean, they're essentially both just math statements right? I think to assert that a = a and a = 3 are both equations (sure, they are essentially the same statement, right?) would completely undermine the development of the reasoning process because there's a huge conceptual gulf between a = a (axiom), a = 3 (theorem if started with a different equation), and a := 3 (definition). The same goes for understanding the appropriate relationship between scalar and vector (in any field).