Definite Integral of a Rational Function

Click For Summary

Discussion Overview

The discussion revolves around evaluating the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$ and explores various methods for solving it, including series expansions and contour integration techniques. The scope includes mathematical reasoning and technical explanations related to integral calculus.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • Post 1 presents the integral to be evaluated.
  • Post 2 introduces a series expansion involving double factorials and relates it to the integral evaluation.
  • Post 3 mentions a method involving contour integration that yields a result for a related integral $$\int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx$$.
  • Post 4 reiterates the contour integration method and states that it leads to the conclusion that $$\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0$$, providing an alternative approach using the substitution $$y=1/x$$.

Areas of Agreement / Disagreement

Participants present multiple methods for evaluating integrals, but there is no consensus on the evaluation of the original integral. The discussion includes competing views on the results obtained from different methods.

Contextual Notes

Some participants rely on specific mathematical identities and transformations, which may depend on certain assumptions or definitions that are not fully explored in the discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Evaluate the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$
 
Physics news on Phys.org
z^4=-1 has the solutions
z=e^{i\pi/4},e^{i3\pi/4},e^{-i3\pi/4},e^{-i\pi/4}
\int_0^\infty \frac{x^2+1}{x^4+1}dx=\frac{1}{2}\int_{-\infty}^\infty \frac{x^2+1}{x^4+1}dx
by complex integral along the real axis and upper semicircle contour
=i\pi [\ Res (\frac{z^2+1}{z^4+1},e^{i\pi/4})+ \ Res (\frac{z^2+1}{z^4+1},e^{i3\pi/4})]=\frac{\pi}{\sqrt{2}}

Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...

Or not in series,
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=2\int_0^\infty \frac{dt}{2+t^2}=\sqrt{2}[\arctan \ s]^\infty_0=\frac{\pi}{\sqrt{2}}
where
t=\tan \phi
s=\frac{t}{\sqrt{2}}
 
Last edited:
anuttarasammyak said:
Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...
Using ##(2n)!! = 2n (2n-2) \cdots 2 = 2^n n!##,

\begin{align*}
\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n}
\end{align*}

We have

\begin{align*}
\frac{1}{\sqrt{x+1}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} x^n
\end{align*}

So that

\begin{align*}
\frac{1}{\sqrt{2}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} .
\end{align*}
 
Last edited:
  • Like
Likes   Reactions: anuttarasammyak
I think you can do it in the first quadrant as the limit as R \to \infty of <br /> \oint_C \frac{1 + z^2}{1 + z^4}\,dz = \underbrace{\int_0^R \frac{1 + x^2}{1 + x^4}\,dx}_{\mbox{real}} - i \underbrace{\int_0^R \frac{1 - y^2}{1 + y^4}\,dy}_{\mbox{real}} + \underbrace{\int_0^{\pi/2} \frac{1 + R^2e^{2it}}{1 + R^4e^{4it}}iRe^{it}\,dt}_{=O(R^{-1})} which reduces to <br /> \DeclareMathOperator*{\Res}{\operatorname{Res}}<br /> \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx = \operatorname{Re} \left(2\pi i \Res\limits_{z = e^{i\pi/4}} \frac{1 + z^2}{1 + z^4}\right).
 
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}Method #2:

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} dx & = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{x^2 + \dfrac{1}{x^2}} dx
\nonumber \\
& = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{\left( x - \dfrac{1}{x} \right)^2 + 2} dx
\nonumber \\
& = \int_0^\infty \dfrac{d \left( x - \dfrac{1}{x} \right)}{\left( x - \dfrac{1}{x} \right)^2 + 2}
\nonumber \\
& = \int_{-\infty}^\infty \dfrac{d u}{u^2 + 2}
\nonumber \\
& = \frac{1}{\sqrt{2}} \int_{-\infty}^\infty \dfrac{d u}{u^2 + 1}
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}Method #3

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \frac{1}{2} \int_0^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx + \frac{1}{2} \int_0^\infty \frac{1}{x^2 + \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{\left( x - \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{2}} dx
\end{align*}

Using ##u = x - \frac{1}{\sqrt{2}}##, the above becomes

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \int_{-\infty}^\infty \frac{1}{2 u^2 + 1} du
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}
 
  • Like
Likes   Reactions: dextercioby
julian said:
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}

In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.

Placing a branch cut along the positive real axis so that 0 \leq \arg z &lt; 2\pi, we can calculate <br /> \frac14\oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz = \frac{\pi i}2 \left( e^{-\frac34 \pi i} + e^{-\frac14 \pi i} \right) = \frac{\pi}{\sqrt 2} where C conists of the positive real axis (\arg z = 0), a large circle of radius R about the origin, the positive real axis (\arg z \to 2\pi^{-}) and a small circle of radius \epsilon about the origin. In the limit R \to \infty and \epsilon \to 0 the contributions from the circles vanish and we are left with \begin{split}<br /> \frac14 \oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz &amp;= <br /> \frac14\int_0^\infty \frac{u^{-3/4} + u^{-1/4}}{1 + u}\,du - \frac i4\int_0^\infty \frac{u^{-3/4} - u^{-1/4}}{1 + u}\,du \\<br /> &amp;= \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx - i \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx. \end{split}<br /> Taking real and imaginary parts gives the results.
 
pasmith said:
In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.
Yes, you get out the additional result:

\begin{align*}
\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0
\end{align*}

You can see this also by doing ##y=1/x## in the following integral:

\begin{align*}
\int_0^\infty \frac{1}{1+x^4} dx = \int_0^\infty \frac{y^2}{1+y^4} dy
\end{align*}
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K