POTW Definite Integral of a Rational Function

Click For Summary
The discussion focuses on evaluating the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$ using various methods, including contour integration and series expansion. The integral is shown to relate to the series $$\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}$$ and the function $$\frac{1}{\sqrt{x+1}}$$. Additionally, it is established that $$\int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx = 0$$, which can also be demonstrated through a substitution method. The discussion highlights the interconnectedness of these integrals and their evaluations. Overall, the thread provides insights into advanced techniques for solving definite integrals of rational functions.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Evaluate the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$
 
Physics news on Phys.org
z^4=-1 has the solutions
z=e^{i\pi/4},e^{i3\pi/4},e^{-i3\pi/4},e^{-i\pi/4}
\int_0^\infty \frac{x^2+1}{x^4+1}dx=\frac{1}{2}\int_{-\infty}^\infty \frac{x^2+1}{x^4+1}dx
by complex integral along the real axis and upper semicircle contour
=i\pi [\ Res (\frac{z^2+1}{z^4+1},e^{i\pi/4})+ \ Res (\frac{z^2+1}{z^4+1},e^{i3\pi/4})]=\frac{\pi}{\sqrt{2}}

Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...

Or not in series,
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=2\int_0^\infty \frac{dt}{2+t^2}=\sqrt{2}[\arctan \ s]^\infty_0=\frac{\pi}{\sqrt{2}}
where
t=\tan \phi
s=\frac{t}{\sqrt{2}}
 
Last edited:
anuttarasammyak said:
Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...
Using ##(2n)!! = 2n (2n-2) \cdots 2 = 2^n n!##,

\begin{align*}
\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n}
\end{align*}

We have

\begin{align*}
\frac{1}{\sqrt{x+1}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} x^n
\end{align*}

So that

\begin{align*}
\frac{1}{\sqrt{2}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} .
\end{align*}
 
Last edited:
  • Like
Likes anuttarasammyak
I think you can do it in the first quadrant as the limit as R \to \infty of <br /> \oint_C \frac{1 + z^2}{1 + z^4}\,dz = \underbrace{\int_0^R \frac{1 + x^2}{1 + x^4}\,dx}_{\mbox{real}} - i \underbrace{\int_0^R \frac{1 - y^2}{1 + y^4}\,dy}_{\mbox{real}} + \underbrace{\int_0^{\pi/2} \frac{1 + R^2e^{2it}}{1 + R^4e^{4it}}iRe^{it}\,dt}_{=O(R^{-1})} which reduces to <br /> \DeclareMathOperator*{\Res}{\operatorname{Res}}<br /> \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx = \operatorname{Re} \left(2\pi i \Res\limits_{z = e^{i\pi/4}} \frac{1 + z^2}{1 + z^4}\right).
 
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}Method #2:

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} dx & = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{x^2 + \dfrac{1}{x^2}} dx
\nonumber \\
& = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{\left( x - \dfrac{1}{x} \right)^2 + 2} dx
\nonumber \\
& = \int_0^\infty \dfrac{d \left( x - \dfrac{1}{x} \right)}{\left( x - \dfrac{1}{x} \right)^2 + 2}
\nonumber \\
& = \int_{-\infty}^\infty \dfrac{d u}{u^2 + 2}
\nonumber \\
& = \frac{1}{\sqrt{2}} \int_{-\infty}^\infty \dfrac{d u}{u^2 + 1}
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}Method #3

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \frac{1}{2} \int_0^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx + \frac{1}{2} \int_0^\infty \frac{1}{x^2 + \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{\left( x - \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{2}} dx
\end{align*}

Using ##u = x - \frac{1}{\sqrt{2}}##, the above becomes

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \int_{-\infty}^\infty \frac{1}{2 u^2 + 1} du
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}
 
  • Like
Likes dextercioby
julian said:
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}

In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.

Placing a branch cut along the positive real axis so that 0 \leq \arg z &lt; 2\pi, we can calculate <br /> \frac14\oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz = \frac{\pi i}2 \left( e^{-\frac34 \pi i} + e^{-\frac14 \pi i} \right) = \frac{\pi}{\sqrt 2} where C conists of the positive real axis (\arg z = 0), a large circle of radius R about the origin, the positive real axis (\arg z \to 2\pi^{-}) and a small circle of radius \epsilon about the origin. In the limit R \to \infty and \epsilon \to 0 the contributions from the circles vanish and we are left with \begin{split}<br /> \frac14 \oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz &amp;= <br /> \frac14\int_0^\infty \frac{u^{-3/4} + u^{-1/4}}{1 + u}\,du - \frac i4\int_0^\infty \frac{u^{-3/4} - u^{-1/4}}{1 + u}\,du \\<br /> &amp;= \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx - i \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx. \end{split}<br /> Taking real and imaginary parts gives the results.
 
pasmith said:
In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.
Yes, you get out the additional result:

\begin{align*}
\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0
\end{align*}

You can see this also by doing ##y=1/x## in the following integral:

\begin{align*}
\int_0^\infty \frac{1}{1+x^4} dx = \int_0^\infty \frac{y^2}{1+y^4} dy
\end{align*}
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K