Definition of differential equation

Click For Summary

Discussion Overview

The discussion revolves around the definition of a differential equation, particularly focusing on the terminology of "dependent variables" and "independent variables" as used in the context of differential equations. The scope includes conceptual clarification and technical explanation.

Discussion Character

  • Conceptual clarification, Technical explanation

Main Points Raised

  • One participant cites their textbook's definition of a differential equation, highlighting the role of derivatives and the distinction between dependent and independent variables.
  • Another participant explains that a variable is termed dependent if a derivative of that variable occurs, using the example of $y = y(x)$ where $y$ is dependent on $x$.
  • Further clarification is provided that in the expression $$\frac{dy}{dx}$$, $x$ is identified as the independent variable.
  • A later reply confirms the identification of $x$ as the independent variable in the context of the differential equation.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and roles of dependent and independent variables in differential equations, with no significant disagreement noted.

Contextual Notes

Some assumptions about the definitions of dependent and independent variables may not be explicitly stated, and the discussion does not delve into more complex scenarios involving multiple variables.

find_the_fun
Messages
147
Reaction score
0
My textbook defines differential equation as

an equation containing the derivatives of one or more unknown functions(or dependent variables), with respect to one or more independent variables.

Could someone explain what is meant by the part in parenthesis "dependent variables"? I don't see the difference.
 
Physics news on Phys.org
find_the_fun said:
My textbook defines differential equation as
Could someone explain what is meant by the part in parenthesis "dependent variables"? I don't see the difference.

When a differential equation involves one or more derivatives with respect to a particular variable, that variable is called the independent variable.

A variable is called dependent if a derivative of that variable occurs.

When $y = y(x)$ is an unknown function in respect to $x$, $y$ is a dependent variable and $x$ an independent variable.
 
mathmari said:
When a differential equation involves one or more derivatives with respect to a particular variable, that variable is called the independent variable.
So in the case $$\frac{dy}{dx}$$ the$$ x$$ is referred to as the independent variable?
 
find_the_fun said:
So in the case $$\frac{dy}{dx}$$ the$$ x$$ is referred to as the independent variable?

Yes, that's right!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
8K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K