MHB Definition of $S_n$ for Cantor-Schröder-Bernstein Theorem

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Definition
Click For Summary
The discussion centers on the recursive definition of the sets $S_n$ in the context of the Cantor-Schröder-Bernstein theorem. It begins with $S_0$ defined as the set difference between $A$ and the image of $B$ under $g$. Each subsequent set $S_{n+1}$ is defined using the function $g$ applied to the image of $S_n$ under the function $f$. The goal is to clarify the construction of these sets and their role in proving the theorem. Understanding this recursive definition is crucial for comprehending the surjective function $h$ that ultimately establishes the equinumerosity of sets $A$ and $B$.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I am looking at the proof of the theorem of Cantor- Schröder-Bernstein, that states the following:

Let $A,B$ be sets. If $A$ is equinumerous with a subset of $B$ and $B$ is equinumerous with a subset of $A$ then $A, B$ are equinumerous. Or equivalently, if $f: A \overset{1-1}{B}$ and $g: B \overset{1-1}{A}$ then there is a $h: A \overset{\text{surjective}}{\to}B$.

Proof:

Let $f: A \overset{1-1}{\to}B$ and $g: B \overset{1-1}{\to}A$.
We define recursively the following sequence of sets:

$$S_0:=A-g(B)\\S_{n+1}=g[f[S_n]]\\ \text{ for all } n \in \omega \\ \dots$$

We define $S:=\bigcup_{n \in \omega} S_n$ and the function $h: A \to B$ as follows:

$$f(x)=x \text{ if } x \in S \\ h(x)=g^{-1}(x) \text{ if } x \in A-S$$
Could you explain me the definition of $S_n$?
 
Physics news on Phys.org
evinda said:
Hi! (Smile)

I am looking at the proof of the theorem of Cantor- Schröder-Bernstein, that states the following:

Let $A,B$ be sets. If $A$ is equinumerous with a subset of $B$ and $B$ is equinumerous with a subset of $A$ then $A, B$ are equinumerous. Or equivalently, if $f: A \overset{1-1}{B}$ and $g: B \overset{1-1}{A}$ then there is a $h: A \overset{\text{surjective}}{\to}B$.

Proof:

Let $f: A \overset{1-1}{\to}B$ and $g: B \overset{1-1}{\to}A$.
We define recursively the following sequence of sets:

$$S_0:=A-g(B)\\S_{n+1}=g[f[S_n]]\\ \text{ for all } n \in \omega \\ \dots$$

We define $S:=\bigcup_{n \in \omega} S_n$ and the function $h: A \to B$ as follows:

$$f(x)=x \text{ if } x \in S \\ h(x)=g^{-1}(x) \text{ if } x \in A-S$$
Could you explain me the definition of $S_n$?
Hi evinda.

You have defined $S_n$ inductively by declaring:

$$S_0:=A-g(B)\\S_{n+1}=g[f[S_n]]\\ \text{ for all } n \in \omega \\ \dots$$

Where exactly are you facing a problem?
 
Greetings, I am studying probability theory [non-measure theory] from a textbook. I stumbled to the topic stating that Cauchy Distribution has no moments. It was not proved, and I tried working it via direct calculation of the improper integral of E[X^n] for the case n=1. Anyhow, I wanted to generalize this without success. I stumbled upon this thread here: https://www.physicsforums.com/threads/how-to-prove-the-cauchy-distribution-has-no-moments.992416/ I really enjoyed the proof...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K