- #1

- 14

- 0

[tex]T\left\{\psi(x)\bar{\psi}(x')\right\} = \theta(t - t')\psi(x)\bar{\psi}(x') - \theta(t' - t)\bar{\psi}(x')\psi(x)[/tex]

The spinor indices are always left out. So should it be

**A**:

[tex]T\left\{\psi_\alpha(x)\bar{\psi}_\beta(x')\right\} = \theta(t - t')\psi_\alpha(x)\bar{\psi}_\beta(x') - \theta(t' - t)\bar{\psi}_\beta(x')\psi_\alpha(x)[/tex]

or

**B**:

[tex]T\left\{\psi_\alpha(x)\bar{\psi}_\beta(x')\right\} = \theta(t - t')\psi_\alpha(x)\bar{\psi}_\beta(x') - \theta(t' - t)\bar{\psi}_\alpha(x')\psi_\beta(x)[/tex]?

I personally think the

**A**definition feels more natural, but when I use it in my derivations I get strange results. On the other hand, the

**B**definition gives more reasonable results. It could simply be that I've done some mistakes in the derivations, but before I dig into those I want to know if I've got the definition right in the first place.