# What is Spinors: Definition and 130 Discussions

In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. However, when a sequence of such small rotations is composed (integrated) to form an overall final rotation, the resulting spinor transformation depends on which sequence of small rotations was used. Unlike vectors and tensors, a spinor transforms to its negative when the space is continuously rotated through a complete turn from 0° to 360° (see picture). This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms).
It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geometry by Élie Cartan in 1913. In the 1920s physicists discovered that spinors are essential to describe the intrinsic angular momentum, or "spin", of the electron and other subatomic particles.Spinors are characterized by the specific way in which they behave under rotations. They change in different ways depending not just on the overall final rotation, but the details of how that rotation was achieved (by a continuous path in the rotation group). There are two topologically distinguishable classes (homotopy classes) of paths through rotations that result in the same overall rotation, as illustrated by the belt trick puzzle. These two inequivalent classes yield spinor transformations of opposite sign. The spin group is the group of all rotations keeping track of the class. It doubly covers the rotation group, since each rotation can be obtained in two inequivalent ways as the endpoint of a path. The space of spinors by definition is equipped with a (complex) linear representation of the spin group, meaning that elements of the spin group act as linear transformations on the space of spinors, in a way that genuinely depends on the homotopy class. In mathematical terms, spinors are described by a double-valued projective representation of the rotation group SO(3).
Although spinors can be defined purely as elements of a representation space of the spin group (or its Lie algebra of infinitesimal rotations), they are typically defined as elements of a vector space that carries a linear representation of the Clifford algebra. The Clifford algebra is an associative algebra that can be constructed from Euclidean space and its inner product in a basis-independent way. Both the spin group and its Lie algebra are embedded inside the Clifford algebra in a natural way, and in applications the Clifford algebra is often the easiest to work with. A Clifford space operates on a spinor space, and the elements of a spinor space are spinors. After choosing an orthonormal basis of Euclidean space, a representation of the Clifford algebra is generated by gamma matrices, matrices that satisfy a set of canonical anti-commutation relations. The spinors are the column vectors on which these matrices act. In three Euclidean dimensions, for instance, the Pauli spin matrices are a set of gamma matrices, and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely constitutes a "column vector" (or spinor), involves the choice of basis and gamma matrices in an essential way. As a representation of the spin group, this realization of spinors as (complex) column vectors will either be irreducible if the dimension is odd, or it will decompose into a pair of so-called "half-spin" or Weyl representations if the dimension is even.

View More On Wikipedia.org
1. ### I The Dirac equation as a linear tensor equation for one component

The abstract of my new article (Eur. Phys. J. C 84, 488 (2024)): The Dirac equation is one of the most fundamental equations of modern physics. It is a spinor equation, but some tensor equivalents of the equation were proposed previously. Those equivalents were either nonlinear or involved...
2. ### Quantum Clifford Algebra for Quantum Field Theory, Supersymmetry, Supergravity

I'm currently trying to learn Clifford algebra or more specifically spinors, in higher dimensions. My goal is to study AdS/CFT, but an essential part of learning it is to understand SUSY which then needs some element of Clifford algebra in higher dimensions. I have consulted, Introduction to...
3. ### A In what representation do Dirac adjoint spinors lie?

I hope this is the right section as the question is about Lie groups and representations. First and foremost, in this post I'll be dealing with Dirac and Weyl spinor (not spinor fields) representations of the Lorentz algebra. Also, for simplicity, I'll use the chiral representation later on...

12. ### A Why does equation 35.21 have an extra minus sign?

Eq35.17 and 35.18 is obtained,but the result of Eq35.21 I obtained has an extra minus sign,I don't know what's wrong of my calculation,so I hope some people much more smarter can figure it out.Thanks.
13. ### A Why does the Kähler Potential only contain left handed Weyl spinors?

Why aren't the right handed Weyl spinors included?
14. ### A Vector and Axial vector currents in QFT

I'm currently working out quantities that include the vector and axialvector currents ##j^\mu_B(x)=\bar{\psi}(x)\Gamma^\mu_{B,0}\psi(x)## where B stands for V (vector) or A (axialvector). The gamma in the middle is a product of gamma matrices and the psi's are dirac spinors. Therefore on the...
15. ### A How to deal with colour indices on spinors

I want to calculate transition amplitudes in QCD for processes like ##q(k)q^\prime(p)\rightarrow q(k^\prime)q^\prime(p^\prime)##, where ##q,q^\prime## are quarks. However, I am unsure what to do with the colour indices of the quark spinors upon squaring the matrix element. For the sake of...

28. ### A Probability density of dirac spinors

The probability density of the dirac spinor is known to be ∑(Ψ)2 and I know how it is derived. However, I'm just wondering why it should be positive definite. Since the lower two components represent antiparticles, so shouldn't the probability density contribution of those two components be...
29. ### I Pauli spin matrices and Eigen spinors

So I have been studying the case of spin 1/2 and I have understood how the formulations work through to find the spin matrices. However I do not get an intuitive understanding of what they mean and why they are formulated the way they are. I follow Griffith's book and in it as he begins to solve...

49. ### Lorentz Transformation on Left & Right Chiral Spinors

I will start with a summary of my confusion: I came across seemingly contradictory transformation rules for left and right chiral spinor in 2 books, and am unable to understand what part is Physics and what part is convention. Or is it that one of the two books incorrectly writes the...
50. ### Barut's Electrodynamics Identity Problem

On page 25 of his book "Electrodynamics and classical theory of fields and particles" he presents this identity \sigma_\mu\sigma_\nu-\frac{i}{2}\epsilon_{\mu\nu\beta\alpha}\sigma^\beta\sigma^\alpha=\delta_{\mu\nu} where \sigma^\mu:(\mathbf{I},-\mathbf{\sigma}) and...