Degenerate Perturbation: Calculating Eigenvalues

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Eigenvalues
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
See below
Relevant Equations
N/A
Say a model hamiltonian with unperturbed eigenvalues E1 and E2 = E3 is subjected to a perturbation V such that V12 = V21 = x and V13 = V31 = x2, with all other elements zero. I'm having trouble calculating the corrected eigenvalues. In the degenerate subspace spanned by |2> and |3> I need to diagonalise V, but all of these matrix elements are zero?
 
Physics news on Phys.org
It sounds like the first-order correction is zero, and you'll need to go to higher orders to lift the degeneracy.
 
If I understand you correctly, you have a perturbed matrix of the form $$H=\begin{pmatrix}
E_1 & V_{12} & V_{13} \\
V_{12}& E_2 & 0 \\
V_{13} & 0 & E_2
\end{pmatrix}.$$Why can you not diagonalize the usual way? Just say$$\det\begin{bmatrix}
E_1-\lambda & V_{12} & V_{13} \\
V_{12}& E_2-\lambda & 0 \\
V_{13} & 0 & E_2-\lambda
\end{bmatrix}=0$$ and solve the characteristic equation. That is easy to do because it factors into ##(E_2-\lambda)## times a quadratic in ##\lambda.## You get three non-degenerate eigenvalues.
 
First of all, there is no reason not to make a rotation in the degenerate subspace such that ##V_{13} = 0##. After that rotation it should be clear that ##E_2## is still an eigenvalue for one state. You can then apply non-degenerate perturbation theory to the remaining 2-dimensional subspace.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top