Hi, there(adsbygoogle = window.adsbygoogle || []).push({});

I am reading the book called "Atom-Photon Interaction", the chapter of " Radiation considered as a Reservoir". My question is actually short, but I have to describe the background.

Following is the density equation which describes the interaction between the damped harmonic oscillator and the radiation.

[itex]\frac{d \sigma}{dt}=-\frac{\Gamma}{2}[a, b^\dagger b]_+ - \Gamma'[\sigma, b^\dagger b]_+-i(\omega_0+\Delta)[b^\dagger b, a]+\Gamma b \sigma b^\dagger + \Gamma'(b^\dagger \sigma b + b \sigma b^\dagger)[/itex].

Here, the ##\sigma## is the density operator for the harmonic oscillator, and ##b## (##b^\dagger##) is the annihilation (creation) operator of the harmonic oscillator, and all the properties of the radiation is contained in the paremeters ##\Gamma## and ##\Gamma'##. Now we want to see how the population evolves, and this is about the calculation ##\langle n| \cdot \cdot \cdot|n \rangle##. So we need to calculate the term ##\langle n|b \sigma b^\dagger|n \rangle##. The following is how I did it, and it actually can lead to the answer that printed in the book.

##\langle n| b \sigma b^\dagger|n \rangle=(b^\dagger |n\rangle)^\dagger \; \sigma \; b^\dagger|n \rangle##

Using ##b^\dagger |n \rangle = \sqrt{n+1}|n+1\rangle## can bring us

##(n+1)\sigma_{n+1,n+1}##

-------------------------------------------------------------------

My question is how about do it the other way.

##\langle n| b \sigma b^\dagger|n \rangle=\langle n | b \sigma (b^\dagger | n \rangle)##

##=\sqrt{n+1}\langle n | b \sigma|n+1\rangle##

Now, If I knew the commuter of ##[\sigma, b]## or, what's ##\sigma |n+1 \rangle##, I can go on with the calcuation, But I don't. Does anyone know how to do it in this way?Do not calculate from the left to right.

PS: It 's correct in the first way, right?

PPS: This is not a stupid question, I hope.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Density equations (light considered as reservioir)

Loading...

Similar Threads for Density equations light |
---|

A Charge density of carbon nanotubes and graphene |

I Density of states |

I Density of States -- alternative derivation |

I Density Functional Theory and pseudopotentials |

A Difference between conduction & convection current density? |

**Physics Forums | Science Articles, Homework Help, Discussion**