- #1

gentsagree

- 96

- 1

Now, very interestingly in the context of AdS/CFT correspondence, it is useful to derive said periodicity from the euclideanised AdS Schwarzschild metric, i.e.

ds^2=Vdτ^(2)+V^(-1)dr^(2)+r^(2)dΩ

where V=1-2M/(m^(2)r)+r^(2)/b^(2).

The result in AdS4 is given by β=4πb^(2)r+/(b^(2)+3r+^(2))

which is easily generalised to higher dimensions.

Anyone knows how to derive the above result from the metric?

I tried to linearise the metric element V, to change to Rindler coordinates and solving for the differential equations, but I only get a "close enough" answer. Perhaps I need a different linearisation of V.

Thanks