- #1

nadeemo

- 19

- 0

## Homework Statement

The analytical expression of [tex]\Delta[/tex]x[tex]\Delta[/tex]p for a particle in a box is:

[tex]\Delta[/tex]x[tex]\Delta[/tex]p = h/2pi[tex]\sqrt{(n\pi)^{2} - 6}[/tex] / [tex]\sqrt{12}[/tex]

for any quantum number, n

## Homework Equations

([tex]\Delta[/tex]x)[tex]^{2}[/tex] = <x[tex]^{2}[/tex]> - <x>[tex]^{2}[/tex]

and ([tex]\Delta[/tex]p)[tex]^{2}[/tex] = <p[tex]^{2}[/tex]> - <p>[tex]^{2}[/tex]

[tex]\Psi[/tex] = [tex]\sqrt{2/L}[/tex] sin(nxpi/L)

## The Attempt at a Solution

so i tried to find (delta x)^2 and multiplied it with (delta p)^2 and rooted it, but i still have "L" left over in my derivation which doesn't work out...