MHB Derivatives of implicit realtionships.

Click For Summary
The discussion centers on the differentiation of the implicit equation $y^3 + 5x^2 = 5x - 2y$. It highlights the use of the chain rule for implicit differentiation, stating that to differentiate $y^3$, you would apply the formula $\frac{d}{dx}(y^3) = 3y^2\frac{dy}{dx}$. The conversation explains that by differentiating both sides of the equation with respect to $x$, one can derive an expression for $\frac{dy}{dx}$. Additionally, it references the historical contribution of Ulisse Dini, who established a method for finding derivatives of implicitly defined functions. Implicit differentiation is thus confirmed as a valid and applicable technique for this equation.
Petrus
Messages
702
Reaction score
0
Hello,
Today did me and my friend talked of derivate and he asked about some help. Then he asked me is it possible to derivate $y^3+5x^2=5x-2y$ and i was clueless how i derivate that. Is this difficoult to derivate?is it possible to do it?
 
Physics news on Phys.org
Re: Derivate of functions.

Petrus said:
Hello,
Today did me and my friend talked of derivate and he asked about some help. Then he asked me is it possible to derivate $y^3+5x^2=5x-2y$ and i was clueless how i derivate that. Is this difficoult to derivate?is it possible to do it?
You need to use the chain rule. This says that if $z$ is a function of $y$ and $y$ is a function of $x$ then $\dfrac{dz}{dx} = \dfrac{dz}{dy}\dfrac{dy}{dx}.$ So for example if you want to differentiate $y^3$ with respect to $x$, the chain rule says that $\dfrac{d}{dx}(y^3) = 3y^2\dfrac{dy}{dx}.$ You can then differentiate both sides of the equation $y^3+5x^2=5x-2y$ with respect to $x$, to get $3y^2\frac{dy}{dx}+ 10x = 5 -2\frac{dy}{dx}.$ Now solve that equation to find an expression for $\frac{dy}{dx}.$

That process is called implicit differentiation.
 
Re: Derivate of functions.

Petrus said:
Hello,
Today did me and my friend talked of derivate and he asked about some help. Then he asked me is it possible to derivate $y^3+5x^2=5x-2y$ and i was clueless how i derivate that. Is this difficoult to derivate?is it possible to do it?

If You write the equation as...

$\displaystyle f(x,y)= y^{3} + 2\ y + 5\ x^{2} - 5\ x =0$ (1)

... You obtain the implicit definition of a function $y= \varphi(x)$. In the XVIII century the Italian mathematician and senator of the Kingdom Ulisse Dini demonstrated that, under appropriate conditions, the derivative of that function can be obtained as... $\displaystyle \varphi^{\ '}(x)= - \frac{f^{\ '}_{x}(x,y)}{f^{\ '}_{y}(x,y)}$ (2)Kind regards $\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K