Derive a closed form and find its limit

Click For Summary
SUMMARY

The closed form for the series \( S_n(k) = 1 + 2k + 3k^2 + \ldots + (n+1)k^n \) is derived using differentiation of the geometric series. The result is given by \( S_n(k) = \frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2} \). As \( n \) approaches infinity, the limit converges to \( \frac{1}{(1-k)^2} \) for \( |k| < 1 \). This method was discussed and validated by multiple participants in the forum.

PREREQUISITES
  • Understanding of geometric series and their properties
  • Knowledge of limits and convergence in calculus
  • Familiarity with differentiation techniques
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the differentiation of series and its applications
  • Explore the concept of convergence in infinite series
  • Learn about generating functions in combinatorics
  • Investigate advanced topics in calculus related to series
USEFUL FOR

Mathematicians, calculus students, and anyone interested in series convergence and differentiation techniques will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $S_n(k)$ be defined by:

$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.

Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k)$$.
 
Physics news on Phys.org
lfdahl said:
Let $S_n(k)$ be defined by:

$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.

Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k).$$
[sp]Differentiate the geometric series $1 + k + k^2 + \ldots + k^{n+1} = \dfrac{1-k^{n+2}}{1-k}$ with respect to $k$, to get $$1 + 2k + 3k^2 + \ldots + (n+1)k^n = \frac{-(n+2)k^{n+1}(1-k) + 1 - k^{n+2}}{(1-k)^2} = \frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2} \to \frac1{(1-k)^2}$$ as $n \to \infty$.

[/sp]
 
Opalg said:
[sp]Differentiate the geometric series $1 + k + k^2 + \ldots + k^{n+1} = \dfrac{1-k^{n+2}}{1-k}$ with respect to $k$, to get $$1 + 2k + 3k^2 + \ldots + (n+1)k^n = \frac{-(n+2)k^{n+1}(1-k) + 1 - k^{n+2}}{(1-k)^2} = \frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2} \to \frac1{(1-k)^2}$$ as $n \to \infty$.

[/sp]

Thankyou very much, Opalg, for your participation and elegant solution!
 
My solution:

We may express $S_n$ in the following difference equation:

$$S_{n}-S_{n-1}=(n+1)k^n$$

The homogeneous solution is:

$$h_n=c_1$$

And the particular solution will take the form:

$$p_n=\left(c_2n+c_3\right)k^n$$

Substitute into our difference equation:

$$\left(c_2n+c_3\right)k^n-\left(c_2(n-1)+c_3\right)k^{n-1}=(n+1)k^n$$

Divide through by $k^{n-1}$:

$$\left(c_2n+c_3\right)k-\left(c_2(n-1)+c_3\right)=(n+1)k$$

Arrange as:

$$c_2(k-1)n+\left(c_3(k-1)+c_2\right)=kn+k$$

Equating like coefficients yields the system:

$$c_2(k-1)=k\implies c_2=-\frac{k}{1-k}$$

$$c_3(k-1)+c_2=c_3(k-1)-\frac{k}{1-k}=k\implies c_3=-\frac{k(2-k)}{(1-k)^2}$$

And thus our particular solution is:

$$p_n=-\left(\frac{k}{1-k}n+\frac{k(2-k)}{(1-k)^2}\right)k^n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}$$

And so by the principle of superposition, we have:

$$S_n=p_n+h_n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}+c_1$$

Using the initial value (extending $n$ to $\mathbb{N_0}$ for simplicity), we find:

$$S_0=-\left(\frac{2-k}{(1-k)^2}\right)k+c_1=1\implies c_1=\frac{1}{(1-k)^2}$$

And so the solution satisfying the given conditions is:

$$S_n=\frac{1}{(1-k)^2}-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}=\frac{1-\left((1-k)n+2-k\right)k^{n+1}}{(1-k)^2}$$

As $$\lim_{n\to\infty}\left(\frac{an+b}{c^n}\right)=0$$ for $1<c$, we see that:

$$S_{\infty}=\lim_{n\to\infty}S_n=\frac{1}{(1-k)^2}$$
 
MarkFL said:
My solution:

We may express $S_n$ in the following difference equation:

$$S_{n}-S_{n-1}=(n+1)k^n$$

The homogeneous solution is:

$$h_n=c_1$$

And the particular solution will take the form:

$$p_n=\left(c_2n+c_3\right)k^n$$

Substitute into our difference equation:

$$\left(c_2n+c_3\right)k^n-\left(c_2(n-1)+c_3\right)k^{n-1}=(n+1)k^n$$

Divide through by $k^{n-1}$:

$$\left(c_2n+c_3\right)k-\left(c_2(n-1)+c_3\right)=(n+1)k$$

Arrange as:

$$c_2(k-1)n+\left(c_3(k-1)+c_2\right)=kn+k$$

Equating like coefficients yields the system:

$$c_2(k-1)=k\implies c_2=-\frac{k}{1-k}$$

$$c_3(k-1)+c_2=c_3(k-1)-\frac{k}{1-k}=k\implies c_3=-\frac{k(2-k)}{(1-k)^2}$$

And thus our particular solution is:

$$p_n=-\left(\frac{k}{1-k}n+\frac{k(2-k)}{(1-k)^2}\right)k^n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}$$

And so by the principle of superposition, we have:

$$S_n=p_n+h_n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}+c_1$$

Using the initial value (extending $n$ to $\mathbb{N_0}$ for simplicity), we find:

$$S_0=-\left(\frac{2-k}{(1-k)^2}\right)k+c_1=1\implies c_1=\frac{1}{(1-k)^2}$$

And so the solution satisfying the given conditions is:

$$S_n=\frac{1}{(1-k)^2}-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}=\frac{1-\left((1-k)n+2-k\right)k^{n+1}}{(1-k)^2}$$

As $$\lim_{n\to\infty}\left(\frac{an+b}{c^n}\right)=0$$ for $1<c$, we see that:

$$S_{\infty}=\lim_{n\to\infty}S_n=\frac{1}{(1-k)^2}$$

Great job, MarkFL! I was not familiar with this approach, so I´ve learned something new! Thanks!(Handshake)
 
Here is my solution.

Note \begin{align}S_n(k) - kS_n(k) &= 1 + (2k - k) + (3k^2 - 2k^2) + \cdots + [(n+1)k^n - nk^n] - (n+1)k^{n+1}\\
(1-k)S_n(k) &= 1 + k + k^2 + \cdots + k^n - (n+1)k^{n+1}\\
(1-k)S_n(k) &= \frac{1-k^{n+1}}{1-k} - (n+1)k^{n+1}\end{align}
Since $k^{n+1}$ and $(n+1)k^{n+1}$ tend to $0$ as $n\to \infty$ (since $\lvert k\rvert < 1$), then setting $L = \lim\limits_{n\to \infty} S_n(k)$, one obtains $(1-k)L = \dfrac{1}{1-k}$, or $L = \dfrac{1}{(1-k)^2}$.
 
Euge said:
Here is my solution.

Note \begin{align}S_n(k) - kS_n(k) &= 1 + (2k - k) + (3k^2 - 2k^2) + \cdots + [(n+1)k^n - nk^n] - (n+1)k^{n+1}\\
(1-k)S_n(k) &= 1 + k + k^2 + \cdots + k^n - (n+1)k^{n+1}\\
(1-k)S_n(k) &= \frac{1-k^{n+1}}{1-k} - (n+1)k^{n+1}\end{align}
Since $k^{n+1}$ and $(n+1)k^{n+1}$ tend to $0$ as $n\to \infty$ (since $\lvert k\rvert < 1$), then setting $L = \lim\limits_{n\to \infty} S_n(k)$, one obtains $(1-k)L = \dfrac{1}{1-k}$, or $L = \dfrac{1}{(1-k)^2}$.

What a nice approach, Euge! Thankyou very much for your participation!(Yes)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K