Derive a closed form and find its limit

Click For Summary

Discussion Overview

The discussion revolves around deriving a closed form for the series defined by $S_n(k) = 1 + 2k + 3k^2 + ... + (n+1)k^n$ for $|k| < 1$ and finding the limit as $n$ approaches infinity. The scope includes mathematical reasoning and exploration of series convergence.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • Some participants propose differentiating the geometric series to derive a closed form for $S_n(k)$.
  • One participant presents a derived expression for $S_n(k)$ as $$\frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2}$$ and suggests that it approaches $$\frac{1}{(1-k)^2}$$ as $n \to \infty$.
  • Multiple participants share their solutions without detailing their approaches, indicating a variety of methods being explored.

Areas of Agreement / Disagreement

There is no explicit consensus on the derivation or limit, as multiple participants present their solutions and approaches. The discussion remains open with various contributions.

Contextual Notes

Some solutions may depend on specific assumptions about the convergence of the series or the behavior of $k$ as $n$ approaches infinity, which are not fully explored in the discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $S_n(k)$ be defined by:

$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.

Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k)$$.
 
Physics news on Phys.org
lfdahl said:
Let $S_n(k)$ be defined by:

$S_n(k) = 1 + 2k+3k^2+...+(n+1)k^n$, where $|k| < 1$ and $n \in \Bbb{N}$.

Derive a closed form for $S_n(k)$ and find the limit: $$\lim_{{n}\to{\infty}}S_n(k).$$
[sp]Differentiate the geometric series $1 + k + k^2 + \ldots + k^{n+1} = \dfrac{1-k^{n+2}}{1-k}$ with respect to $k$, to get $$1 + 2k + 3k^2 + \ldots + (n+1)k^n = \frac{-(n+2)k^{n+1}(1-k) + 1 - k^{n+2}}{(1-k)^2} = \frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2} \to \frac1{(1-k)^2}$$ as $n \to \infty$.

[/sp]
 
Opalg said:
[sp]Differentiate the geometric series $1 + k + k^2 + \ldots + k^{n+1} = \dfrac{1-k^{n+2}}{1-k}$ with respect to $k$, to get $$1 + 2k + 3k^2 + \ldots + (n+1)k^n = \frac{-(n+2)k^{n+1}(1-k) + 1 - k^{n+2}}{(1-k)^2} = \frac{(n+1)k^{n+2} - (n+2)k^{n+1} + 1}{(1-k)^2} \to \frac1{(1-k)^2}$$ as $n \to \infty$.

[/sp]

Thankyou very much, Opalg, for your participation and elegant solution!
 
My solution:

We may express $S_n$ in the following difference equation:

$$S_{n}-S_{n-1}=(n+1)k^n$$

The homogeneous solution is:

$$h_n=c_1$$

And the particular solution will take the form:

$$p_n=\left(c_2n+c_3\right)k^n$$

Substitute into our difference equation:

$$\left(c_2n+c_3\right)k^n-\left(c_2(n-1)+c_3\right)k^{n-1}=(n+1)k^n$$

Divide through by $k^{n-1}$:

$$\left(c_2n+c_3\right)k-\left(c_2(n-1)+c_3\right)=(n+1)k$$

Arrange as:

$$c_2(k-1)n+\left(c_3(k-1)+c_2\right)=kn+k$$

Equating like coefficients yields the system:

$$c_2(k-1)=k\implies c_2=-\frac{k}{1-k}$$

$$c_3(k-1)+c_2=c_3(k-1)-\frac{k}{1-k}=k\implies c_3=-\frac{k(2-k)}{(1-k)^2}$$

And thus our particular solution is:

$$p_n=-\left(\frac{k}{1-k}n+\frac{k(2-k)}{(1-k)^2}\right)k^n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}$$

And so by the principle of superposition, we have:

$$S_n=p_n+h_n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}+c_1$$

Using the initial value (extending $n$ to $\mathbb{N_0}$ for simplicity), we find:

$$S_0=-\left(\frac{2-k}{(1-k)^2}\right)k+c_1=1\implies c_1=\frac{1}{(1-k)^2}$$

And so the solution satisfying the given conditions is:

$$S_n=\frac{1}{(1-k)^2}-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}=\frac{1-\left((1-k)n+2-k\right)k^{n+1}}{(1-k)^2}$$

As $$\lim_{n\to\infty}\left(\frac{an+b}{c^n}\right)=0$$ for $1<c$, we see that:

$$S_{\infty}=\lim_{n\to\infty}S_n=\frac{1}{(1-k)^2}$$
 
MarkFL said:
My solution:

We may express $S_n$ in the following difference equation:

$$S_{n}-S_{n-1}=(n+1)k^n$$

The homogeneous solution is:

$$h_n=c_1$$

And the particular solution will take the form:

$$p_n=\left(c_2n+c_3\right)k^n$$

Substitute into our difference equation:

$$\left(c_2n+c_3\right)k^n-\left(c_2(n-1)+c_3\right)k^{n-1}=(n+1)k^n$$

Divide through by $k^{n-1}$:

$$\left(c_2n+c_3\right)k-\left(c_2(n-1)+c_3\right)=(n+1)k$$

Arrange as:

$$c_2(k-1)n+\left(c_3(k-1)+c_2\right)=kn+k$$

Equating like coefficients yields the system:

$$c_2(k-1)=k\implies c_2=-\frac{k}{1-k}$$

$$c_3(k-1)+c_2=c_3(k-1)-\frac{k}{1-k}=k\implies c_3=-\frac{k(2-k)}{(1-k)^2}$$

And thus our particular solution is:

$$p_n=-\left(\frac{k}{1-k}n+\frac{k(2-k)}{(1-k)^2}\right)k^n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}$$

And so by the principle of superposition, we have:

$$S_n=p_n+h_n=-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}+c_1$$

Using the initial value (extending $n$ to $\mathbb{N_0}$ for simplicity), we find:

$$S_0=-\left(\frac{2-k}{(1-k)^2}\right)k+c_1=1\implies c_1=\frac{1}{(1-k)^2}$$

And so the solution satisfying the given conditions is:

$$S_n=\frac{1}{(1-k)^2}-\left(\frac{(1-k)n+2-k}{(1-k)^2}\right)k^{n+1}=\frac{1-\left((1-k)n+2-k\right)k^{n+1}}{(1-k)^2}$$

As $$\lim_{n\to\infty}\left(\frac{an+b}{c^n}\right)=0$$ for $1<c$, we see that:

$$S_{\infty}=\lim_{n\to\infty}S_n=\frac{1}{(1-k)^2}$$

Great job, MarkFL! I was not familiar with this approach, so I´ve learned something new! Thanks!(Handshake)
 
Here is my solution.

Note \begin{align}S_n(k) - kS_n(k) &= 1 + (2k - k) + (3k^2 - 2k^2) + \cdots + [(n+1)k^n - nk^n] - (n+1)k^{n+1}\\
(1-k)S_n(k) &= 1 + k + k^2 + \cdots + k^n - (n+1)k^{n+1}\\
(1-k)S_n(k) &= \frac{1-k^{n+1}}{1-k} - (n+1)k^{n+1}\end{align}
Since $k^{n+1}$ and $(n+1)k^{n+1}$ tend to $0$ as $n\to \infty$ (since $\lvert k\rvert < 1$), then setting $L = \lim\limits_{n\to \infty} S_n(k)$, one obtains $(1-k)L = \dfrac{1}{1-k}$, or $L = \dfrac{1}{(1-k)^2}$.
 
Euge said:
Here is my solution.

Note \begin{align}S_n(k) - kS_n(k) &= 1 + (2k - k) + (3k^2 - 2k^2) + \cdots + [(n+1)k^n - nk^n] - (n+1)k^{n+1}\\
(1-k)S_n(k) &= 1 + k + k^2 + \cdots + k^n - (n+1)k^{n+1}\\
(1-k)S_n(k) &= \frac{1-k^{n+1}}{1-k} - (n+1)k^{n+1}\end{align}
Since $k^{n+1}$ and $(n+1)k^{n+1}$ tend to $0$ as $n\to \infty$ (since $\lvert k\rvert < 1$), then setting $L = \lim\limits_{n\to \infty} S_n(k)$, one obtains $(1-k)L = \dfrac{1}{1-k}$, or $L = \dfrac{1}{(1-k)^2}$.

What a nice approach, Euge! Thankyou very much for your participation!(Yes)
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
4K
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K