quasar_4
- 273
- 0
Homework Statement
I'm supposed to derive the following:
\left({\bf A} \cdot {\bf \sigma} \right) \left({\bf B }\cdot {\bf \sigma} \right) = {\bf A} \cdot {\bf B} I + i \left( {\bf A } \times {\bf B} \right) \cdot {\bf \sigma}
using just the two following facts:
Any 2x2 matrix can be written in a basis of spin matrices:
M = \sum{m_\alpha \sigma_\alpha}
which means that the beta-th component is given by
m_\beta = \frac{1}{2}Tr(M \sigma_\beta)
Homework Equations
listed above...
The Attempt at a Solution
It should just be a left side= right side proof.
I started by saying \left({\bf A} \cdot {\bf \sigma} \right) \left({\bf B }\cdot {\bf \sigma} \right) = <br /> <br /> \left(\sum_\alpha a_\alpha \sigma_\alpha \cdot \sigma \right) \left(\sum_\alpha b_\alpha \sigma_\alpha \cdot \sigma \right) = <br /> <br /> \left( \sum_\beta a_\alpha \delta_{\alpha \beta} \right) \left( \sum_\gamma b_\alpha \delta_{\alpha \gamma} \right) = <br /> <br /> \sum_\beta a_\beta \sum_\gamma b_\gamma =<br /> <br /> \frac{1}{2} Tr(A \sigma_\beta) \frac{1}{2} Tr(B \sigma_\gamma)
Not sure if this is even the right way to start, and I can't see at all where I would go from here to get the appropriate RHS of the identity I'm proving. Any ideas?