davidge said:
Is there a less boring way of deriving the Schwarzschild solution?
By "less boring" I assume, from your further statements about having to compute so many possible combinations of indices, that you mean something like "requires less computational drudgery". The best way I know of to do that is to first derive Schwarzschild
coordinates, i.e., to demonstrate that any spherically symmetric spacetime can be described by coordinates ##(t, r, \theta, \phi)## in which the metric looks like this:
$$
ds^2 =j(t, r) dt^2 + k(t, r) dr^2 + r^2 \left( d\theta^2 + \sin^2 \theta d\phi^2 \right)
$$
Notice that we have already considerably reduced the possible combinations of indices, since the angular part of the metric is just the standard metric on a 2-sphere with radius ##r##, and as far as computing the two unknown functions ##j## and ##k## goes, you don't even have to worry about the angular part at all; in other words, the problem is effectively reduced to only two coordinates instead of four. Also, since there is no ##dt dr## cross term in the metric, the possible index combinations are further reduced. MTW takes this approach in their derivation; I think Carroll's notes also go into it.
Once you have the metric as above, computing its Einstein tensor (you only need to compute the ##tt##, ##tr##, and ##rr## components, as noted above) and setting each component equal to zero (because you want a vacuum solution, with vanishing stress-energy tensor), enables you to find the two unknown functions, and to show that they turn out to be functions of ##r## only, not ##t## (the latter requires rescaling the ##t## coordinate). I wrote up this part in an Insights article some time ago (you can search on "A Short Proof of Birkhoff's Theorem" in the Insights section), but I think it's worth working through it yourself.