Determine the confidence interval

Click For Summary
SUMMARY

The discussion focuses on calculating confidence intervals for sodium and PCB content in water samples from Lake Macatawa and Lake Michigan. For the sodium content in the western basin, the sample mean is calculated as 19.06875 with an adjusted sample variance of approximately 10.59835. A two-sided confidence interval for the mean sodium content at a 95% confidence level is determined to be approximately [17.89646, 20.24104], using the t-distribution quantile of 2.037. Additionally, for the eastern basin, a 90% confidence interval is established, and similar calculations for PCB content are discussed.

PREREQUISITES
  • Understanding of confidence intervals and their calculations
  • Familiarity with sample mean and variance calculations
  • Knowledge of the t-distribution and its quantiles
  • Ability to work with normal distributions in statistical analysis
NEXT STEPS
  • Learn how to calculate confidence intervals using Python's SciPy library
  • Explore the differences between t-distribution and normal distribution
  • Study the implications of sample size on confidence intervals
  • Investigate the effects of variance on statistical inference
USEFUL FOR

Statisticians, environmental scientists, and students conducting research involving water quality analysis and statistical inference methods.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

(a) In winter, the roads around Lake Macatawa are salted. To study the impact of this on Lake Macatawa, students took $32$ water samples from the western basin of the lake and Sodium content (in parts per million, ppm) determined. As a result, the students have receive the following data:
1643538010837.png


(i) Calculate the sample mean.
(ii) Calculate the adjusted sample variance.
(iii) Assume a normal distribution and determine a two-sided confidence interval for the above sample for the mean sodium content with a confidence level of $0.95$. Also enter the used quantile and its (approximate) value.(b) In addition, $35$ water samples were collected from the eastern basin of Lake Macatawa and in each case the sodium content (in ppm) was measured. This resulted in a sample mean of $24.11$ and an adjusted sample variance of $24.44$. Assume a normal distribution.
(i) Determine a two-sided confidence interval for the mean sodium content with a confidence level of $0.9$. Also enter the quantile used and its (approximate) value.
(ii) Determine a confidence interval of the form $(-\infty, h]$ for the mean sodium content with a confidence level of $0.9$. Also state the one used quantile and its (approximate) value.(c) The PCB content was determined from a sample of fish from Lake Michigan (in ppm). It is known that the standard deviation is $0.8$ ppm. Assume a normal distribution. The below were measured:
1643539615613.png


(i) Calculate the sample mean and determine a two-sided confidence interval for the above sample for the mean PCB content with a confidence level of $0.99$. Also enter the used quantile and its
(approximate) value.
(ii) Determine a confidence interval of the form $(-\infty, h]$ for the above sample for the mean PCB content with a confidence level of $0.99$. Give also the quantile used and its (approximate) value.
I have done the following :

(a) (i) We add all elements and divide the result by the number of elements. So the sample mean is equal to \begin{align*}\overline{x}_{32}=& \frac{1}{32}\left(13.0 +18.5 +16.4 +14.8 +19.4+ 17.3 +23.2 +24.9 +20.8 +19.3 +18.8 +23.1 +15.2+ 19.9 +19.1+ 18.1 +25.1+ 16.8+ 20.4 +17.4 +25.2+ 23.1 +15.3+ 19.4 +16.0 +21.7 +15.2+ 21.3+ 21.5 +16.8+ 15.6 +17.6 \right )\\ & =\frac{1}{32}\cdot 610.2=19.06875\end{align*} Is that correct ? :unsure:

(ii) We have that \begin{align*}s_{32}^2&=\frac{1}{32-1}\sum_{i=1}^{32}(x_i-\overline{x}_{32})^2=\frac{1}{31}((13.0-19.06875)^2 +(18.5-19.06875)^2 +(16.4-19.06875)^2 \\ &+(14.8-19.06875)^2 +(19.4-19.06875)^2+ (17.3-19.06875)^2 +(23.2-19.06875)^2 \\ &+(24.9-19.06875)^2 +(20.8-19.06875)^2 +(19.3-19.06875)^2 +(18.8-19.06875)^2 \\ &+(23.1-19.06875)^2 +(15.2-19.06875)^2+ (19.9-19.06875)^2 +(19.1-19.06875)^2\\ &+ (18.1-19.06875)^2 +(25.1-19.06875)^2+ (16.8-19.06875)^2+ (20.4-19.06875)^2 \\ &+(17.4-19.06875)^2 +(25.2-19.06875)^2+ (23.1-19.06875)^2 +(15.3-19.06875)^2\\ &+ (19.4-19.06875)^2 +(16.0-19.06875)^2 +(21.7-19.06875)^2 +(15.2-19.06875)^2\\ &+ (21.3-19.06875)^2+ (21.5-19.06875)^2 +(16.8-19.06875)^2+ (15.6-19.06875)^2 \\ &+(17.6-19.06875)^2 )\\ & = \frac{1}{31}\cdot 328.54875\\ & \approx 10.59835\end{align*} Is that correct ? :unsure:

(iii) Do we use the formula \begin{equation*}\left [M(x)-\frac{\sigma}{\sqrt{n}}q_{1-\frac{a}{2}},M(x)+\frac{\sigma}{\sqrt{n}}q_{1-\frac{a}{2}}\right ] \end{equation*} where $M(x)$is the mean, i.e. $M(x)=19.06875$ ? Is $\sigma$ equal to the square root of the result of (b) ? The value of $q$ is related to the confidence level, right? :unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

a.i and a.ii look correct to me. (Nod)
In a.iii we do not have $\sigma$, which is unknown. Instead we have $s$, which is the standard deviation of the sample. It is indeed the square root of the result of a.ii.

The value of $q$ is indeed related to the confidence interval. Can we find it? 🤔
 
Klaas van Aarsen said:
In a.iii we do not have $\sigma$, which is unknown. Instead we have $s$, which is the standard deviation of the sample. It is indeed the square root of the result of a.ii.

The value of $q$ is indeed related to the confidence interval. Can we find it? 🤔

Ahh ok!

So we use the formula $$\left [M(x)-\frac{\sqrt{V^{\star}}}{\sqrt{n}}t_{n-1,1-a/2}, \ M(x)+\frac{\sqrt{V^{\star}}}{\sqrt{n}}t_{n-1,1-a/2}\right ]$$ right?
Do we have $V^{\star}=s_{32}^2=10.59835$, $M(x)= 19.06875 $ and $t_{n-1,1-a/2}=t_{31,0.975}= 2,037$ ? :unsure:

So we get \begin{equation*}\left [19.06875-\frac{\sqrt{10.59835}}{\sqrt{32}}\cdot 2.037, \ 19.06875+\frac{\sqrt{10.59835}}{\sqrt{32}}\cdot 2.037\right ]\approx \left [17.89646, \ 20.24104\right ]\end{equation*} right? :unsure:
 
Last edited by a moderator:
mathmari said:
Ahh ok!

So we use the formula $$\left [M(x)-\frac{\sqrt{V^{\star}}}{\sqrt{n}}t_{n-1,1-a/2}, \ M(x)+\frac{\sqrt{V^{\star}}}{\sqrt{n}}t_{n-1,1-a/2}\right ]$$ right?
Do we have $V^{\star}=s_{32}^2=10.59835$, $M(x)= 19.06875 $ and $t_{n-1,1-a/2}=t_{31,0.975}= 2,037$ ?

So we get \begin{equation*}\left [19.06875-\frac{\sqrt{10.59835}}{\sqrt{32}}\cdot 2.037, \ 19.06875+\frac{\sqrt{10.59835}}{\sqrt{32}}\cdot 2.037\right ]\approx \left [17.89646, \ 20.24104\right ]\end{equation*} right?
Looks right to me. (Nod)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K