MHB Determine the images of the functions f: R -> R....?

  • Thread starter Thread starter rayne1
  • Start date Start date
  • Tags Tags
    Functions Images
rayne1
Messages
32
Reaction score
0
Determine the images of functions f: R -> R defined as follows:
a) f(x) = x^2/(1+x^2)
b) f(x) = x/(1+|x|)

I have no idea if I am doing it right but this is what I did for a):

The two sets:
f: A -> B
The image of f is the set b ∈ B such that f(x) = b has a solution.
Since f(x) = x^2/(1+x^2) and f(x) = b, we have b = x^2/(1+x^2).
Then, b(1+x^2) = x^2.
For this to be true b >= 0. So, does that mean the image of f is b>=0? If so, is there anything more I need to show?
 
Physics news on Phys.org
rayne said:
Since f(x) = x^2/(1+x^2) and f(x) = b, we have b = x^2/(1+x^2).
Then, b(1+x^2) = x^2.
For this to be true b >= 0. So, does that mean the image of f is b>=0?
You are right that $b=x^2/(1+x^2)$ implies $b\ge0$, but the converse implication does not always hold. In $x^2/(1+x^2)$, the numerator is smaller than the denominator, so $b<1$. Consider small $x$ and large $x$. Can $b$ assume any value between $0$ and $1$?

For $f(x)=x/(1+|x|)$, one can see similarly that $|x|<1+|x|$, so $|f(x)|=|x|/(1+|x|)<1$, which means that $-1<f(x)<1$. Note that $f(x)$ is odd, i.e., $f(x)=-f(-x)$, so it's enough to study its behavior when $x>0$. Can $f(x)$ assume any value between 0 and 1 (and therefore between $-1$ and $1$?
 
Evgeny.Makarov said:
You are right that $b=x^2/(1+x^2)$ implies $b\ge0$, but the converse implication does not always hold. In $x^2/(1+x^2)$, the numerator is smaller than the denominator, so $b<1$. Consider small $x$ and large $x$. Can $b$ assume any value between $0$ and $1$?

For $f(x)=x/(1+|x|)$, one can see similarly that $|x|<1+|x|$, so $|f(x)|=|x|/(1+|x|)<1$, which means that $-1<f(x)<1$. Note that $f(x)$ is odd, i.e., $f(x)=-f(-x)$, so it's enough to study its behavior when $x>0$. Can $f(x)$ assume any value between 0 and 1 (and therefore between $-1$ and $1$?

So for a) it's 0 <= b < 1 and for b) the image can just be written as -1 < f(x) < 1?
 
rayne said:
So for a) it's 0 <= b < 1 and for b) the image can just be written as -1 < f(x) < 1?
Yes. I would use $f(x)$ instead of $b$ for a) as well.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top