MHB Determine the number of integers for which the congruence is true

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
 
Mathematics news on Phys.org
lfdahl said:
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]
 
Last edited:
castor28 said:
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]

Amazing, castor28! Thankyou very much for your sharp-minded deduction! (Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top