MHB Determine the number of integers for which the congruence is true

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The congruence \( x^{25} \equiv x \pmod{n} \) holds for all integers \( x \) if \( n \) is a product of distinct primes \( p \) such that \( p-1 \) divides 24. The relevant primes are 2, 3, 5, 7, and 13. Additionally, \( n \) cannot include the square of any prime, as this would violate the congruence for \( x = p \). By the Chinese Remainder Theorem, any combination of these primes will satisfy the condition, resulting in 31 valid integers \( n \geq 2 \). The analysis concludes that the integers satisfying the congruence are precisely those products of the specified primes.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
 
Mathematics news on Phys.org
lfdahl said:
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]
 
Last edited:
castor28 said:
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]

Amazing, castor28! Thankyou very much for your sharp-minded deduction! (Cool)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top