MHB Determine the ratio of the base to the perimeter.

eleventhxhour
Messages
73
Reaction score
0
8) An isosceles triangle has two sides of length $$9x+3$$. The perimeter of the triangle is $$30x+10$$

a) Determine the ratio of the base to the perimeter, in simplified form. State the restriction on $$x$$

Thanks for your help!
 
Mathematics news on Phys.org
First, let's find the base. We know the two given equal sides plus the base $b$ is equal to the perimeter:

$$2(9x+3)+b=30x+10$$

So, we need to solve this for $b$, to have $b$ in terms of $x$...
 
eleventhxhour said:
8) An isosceles triangle has two sides of length $$9x+3$$. The perimeter of the triangle is $$30x+10$$

a) Determine the ratio of the base to the perimeter, in simplified form. State the restriction on $$x$$

Thanks for your help!

The base has length $b=30x+10-2(9x+3)=12x+4$. So the ratio of the base to the perimeter is $\frac{12x+4}{30x+10}=\frac{6x+2}{15x+5}$. We want the triangle to exist so the perimeter must be positive. So the restriction is that $x$ is (strictly) greater than $\frac{-1}{3}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top