Determining if a series converges

Click For Summary
The discussion centers on the confusion regarding the convergence of a series using the limit comparison test. The original attempt concluded that the series converges, but the answer sheet states it diverges. It was clarified that the series in question behaves like a divergent geometric series, specifically with terms of (5/4)^n. The limit comparison test yielded a positive finite limit, indicating that the series diverges. Additionally, the Nth Term Test for Divergence confirmed that the series diverges as the limit approaches infinity.
Sunwoo Bae
Messages
60
Reaction score
4
Homework Statement
Does the following series converge? Give reasons. (Series shown below)
Relevant Equations
None
323105F3-C6F9-4CE1-A68C-B548847BA194.jpeg

The following is my attempt at the solution.
Here, I used limit comparison test to arrive at the answer that the series converges.
However, the answer sheet reads that the series diverges.
I am confused because I cannot figure where my work went wrong…
can anyone tell me how the series diverges, and why my work is incorrect?

Thank you!
 
Physics news on Phys.org
The geometric series with terms ##(\frac 5 4)^n## clearly diverges. The formula for a convergent geometric series does not apply. And, in particular, the sum of the series in not ##-5##. That would be too absurd!
 
PeroK said:
The geometric series with terms ##(\frac 5 4)^n## clearly diverges. The formula for a convergent geometric series does not apply. And, in particular, the sum of the series in not ##-5##. That would be too absurd!
Got it! Thank you!
 
PeroK said:
That would be too absurd!
As opposed to just absurd enough? :wink:
 
Sunwoo Bae said:
Homework Statement:: Does the following series converge? Give reasons. (Series shown below)
Relevant Equations:: None

However, the answer sheet reads that the series diverges.
I am confused because I cannot figure where my work went wrong…
In your work for the Limit Comparison Test, you arrived at a limit of 1. Your mistake was not realizing that ##\sum \frac {5^n}{4^n}## is a divergent series. Since the limit you calculated was positive and finite, the series you were working with had the same behavior as ##\sum \frac {5^n}{4^n}##.

Another test that is sometimes useful is the Nth Term Test for Divergence. Since ##\lim_{n \to \infty} \frac {5^n}{4^n + 3} = \infty## (work not shown), then the series ##\sum_{n \to \infty} \frac {5^n}{4^n + 3}## diverges. Any time you get a limit that isn't 0 or fails to exist in this test, the series diverges.
 

Similar threads

Replies
3
Views
1K
Replies
14
Views
2K
Replies
7
Views
1K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
11
Views
3K