MHB Determining when a system of equations has no solution and infinite solutions

Ankit2
Messages
1
Reaction score
0
Find the surface in terms of a,b,c on which the following system of equations has no
solution
ax-2y+3z=5
-x+y-bz=-3
2x+cy-2z=d
Could there be any values of a,b,c,d for which the system has infinite solution? (Justify).
 
Physics news on Phys.org
Hello and welcome to MHB! :D

I have retitled your thread so that it indicates the nature of the question being asked.

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Ankit said:
Find the surface in terms of a,b,c on which the following system of equations has no
solution
ax-2y+3z=5
-x+y-bz=-3
2x+cy-2z=d
Could there be any values of a,b,c,d for which the system has infinite solution? (Justify).
Have you tried to solve the system? The first thing I notice is that if you multiply the second equation by "a" and add that to the first equation, you eliminate "x": (ax- 2y+ 3z)+ (-ax+ ay- abz)= (2- a)y+ (3- ab)z= 5- 3a. And that if you multiply the second equation by "2" and add that to the third equation, you also eliminate x: (2x- cy- 2z)+ (-2x+ 2y- 2bz)= (2- c)y- (2+ 2b)z= d- 6. Can you solve those two equations for y and z? If not what would stop you?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top