MHB Determining when a system of equations has no solution and infinite solutions

Click For Summary
The discussion focuses on determining conditions under which a system of equations has no solution or infinite solutions. The equations provided are ax - 2y + 3z = 5, -x + y - bz = -3, and 2x + cy - 2z = d. Participants are encouraged to show their progress in solving the system to facilitate better assistance. Key strategies include manipulating the equations to eliminate variables and analyzing the resulting equations for consistency. The conversation emphasizes the importance of understanding the relationships between the coefficients a, b, c, and d to determine the solution set.
Ankit2
Messages
1
Reaction score
0
Find the surface in terms of a,b,c on which the following system of equations has no
solution
ax-2y+3z=5
-x+y-bz=-3
2x+cy-2z=d
Could there be any values of a,b,c,d for which the system has infinite solution? (Justify).
 
Physics news on Phys.org
Hello and welcome to MHB! :D

I have retitled your thread so that it indicates the nature of the question being asked.

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Ankit said:
Find the surface in terms of a,b,c on which the following system of equations has no
solution
ax-2y+3z=5
-x+y-bz=-3
2x+cy-2z=d
Could there be any values of a,b,c,d for which the system has infinite solution? (Justify).
Have you tried to solve the system? The first thing I notice is that if you multiply the second equation by "a" and add that to the first equation, you eliminate "x": (ax- 2y+ 3z)+ (-ax+ ay- abz)= (2- a)y+ (3- ab)z= 5- 3a. And that if you multiply the second equation by "2" and add that to the third equation, you also eliminate x: (2x- cy- 2z)+ (-2x+ 2y- 2bz)= (2- c)y- (2+ 2b)z= d- 6. Can you solve those two equations for y and z? If not what would stop you?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
927
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K