Diameter of graph-usual chessboard

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Diameter
Click For Summary
SUMMARY

The diameter of a graph representing a chessboard, where vertices correspond to the 64 squares and edges connect squares sharing a side, is determined to be 8. The diameter is defined as the largest distance between any two vertices, calculated as the maximum shortest path between them. The initial assumption that the diameter is 64 is incorrect, as it is not possible to traverse 64 edges between two squares on a chessboard.

PREREQUISITES
  • Understanding of graph theory concepts, specifically graph diameter
  • Familiarity with vertices and edges in a graph
  • Knowledge of shortest path calculations in graphs
  • Basic understanding of chessboard layout and movement
NEXT STEPS
  • Study graph theory definitions, focusing on diameter and shortest paths
  • Learn about algorithms for finding shortest paths, such as Dijkstra's algorithm
  • Explore practical applications of graph theory in computer science
  • Investigate other types of graphs and their properties, such as trees and directed graphs
USEFUL FOR

Students and professionals in mathematics, computer science, and game theory, particularly those interested in graph theory and its applications in problem-solving.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! ;)

I am given this exercise:
A graph has as vertices the $64$ squares of an usual chessboard and two squares are connected with an edge if and only if they have a common side.Which is the diameter of the graph?

I thought that the diameter is equal to $64$,but I am not sure..Could you tell me if it is right?? (Blush)(Blush)
 
Physics news on Phys.org
evinda said:
Hello! ;)

I am given this exercise:
A graph has as vertices the $64$ squares of an usual chessboard and two squares are connected with an edge if and only if they have a common side.Which is the diameter of the graph?

I thought that the diameter is equal to $64$,but I am not sure..Could you tell me if it is right?? (Blush)(Blush)

Hi! :)

I don't think so... (Worried)
What is the definition of the diameter?
 
I like Serena said:
Hi! :)

I don't think so... (Worried)
What is the definition of the diameter?

Diameter of a graph $G$ is defined to be tha largest distance between two vertices of $G$:
$$diam G= \max_{u,v \in V} d(u,v)$$
$d(u,v)$: distance of $u$ and $v$

How can I find it then?? (Thinking)
 
evinda said:
Diameter of a graph $G$ is defined to be tha largest distance between two vertices of $G$:
$$diam G= \max_{u,v \in V} d(u,v)$$
$d(u,v)$: distance of $u$ and $v$

How can I find it then?? (Thinking)

Good! :)

I like to say that the diameter is the longest shortest path.

Well, if you think it is 64, can you find a (shortest) path between 2 nodes that contains 64 edges?
What is the longest shortest path that you can find? (Wondering)
 
I like Serena said:
Good! :)

I like to say that the diameter is the longest shortest path.

Well, if you think it is 64, can you find a (shortest) path between 2 nodes that contains 64 edges?
What is the longest shortest path that you can find? (Wondering)

I don't really know (Worried) Could you give me a hint?? (Blush)
 
evinda said:
I don't really know (Worried) Could you give me a hint?? (Blush)

Well... we can only go from one square to another if those squares are next to each other.
So if we start from 1 end of the board and step to the other side, we're making 8 steps. We can't do it any faster.
That means that the diameter is at least 8.

If we start from one square and take 64 steps to get to some other square, then I think we can also find a shorter path (the distance of 2 squares is the length of the shortest path).
That means that the diameter is less than 64.

Can you find 2 squares for which it will have to take more than 8 steps to cross from the one to the other? (Wondering)
 

Similar threads

Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
3K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K