B Difference between like powers proof

  • Thread starter Thread starter e2m2a
  • Start date Start date
  • Tags Tags
    Difference Proof
Click For Summary
The expression a^n - b^n = 1 is never true for positive integers a, b, and n when a > b and n > 1. A proof using binomial expansion shows that the minimum difference between a^n and b^n occurs when a = b + 1, resulting in a difference greater than 1. Historical context indicates that the tools for such proofs have existed since ancient times, although modern formulations clarify the impossibility of the expression. Observations of specific cases further confirm that the differences increase as n and b grow. Therefore, it is established that a^n - b^n = 1 cannot hold under the given conditions.
e2m2a
Messages
354
Reaction score
13
TL;DR
Is the difference between like powers never equal to 1?
This may seem like a trivial question but I don't know if there is a formal proof for this. Is the following expression never true? a^n-b^n =1, where a >b, a,b,n are positive integer numbers. Was this known since ancient times? Or is there a modern proof for this?
 
Mathematics news on Phys.org
e2m2a said:
Summary: Is the difference between like powers never equal to 1?

This may seem like a trivial question but I don't know if there is a formal proof for this. Is the following expression never true? a^n-b^n =1, where a >b, a,b,n are positive integer numbers. Was this known since ancient times? Or is there a modern proof for this?
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
 
  • Like
Likes nomadreid
PeroK said:
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
The OP also wanted to know whether the proof was modern. Since PeroK's proof is based on a binomial expansion, then the OP can look at https://en.wikipedia.org/wiki/Binomial_theorem#History , which at least shows how far back the tools for this proof existed.
 
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
 
  • Like
Likes nomadreid
PeroK said:
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
Ok, thanks for the reply.
 
PeroK said:
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
Thanks for the response.
 
PeroK said:
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
Thanks for answering.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 3 ·
Replies
3
Views
542
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K