Difference between like powers proof

  • Context: High School 
  • Thread starter Thread starter e2m2a
  • Start date Start date
  • Tags Tags
    Difference Proof
Click For Summary
SUMMARY

The expression an - bn = 1, where a > b and a, b, n are positive integers, is proven to be impossible for n > 1. This conclusion is supported by examining the minimum difference when a = b + 1, leading to the inequality (b + 1)n - bn > 1. The proof utilizes binomial expansion, indicating that the tools for such proofs have historical roots. The impossibility of the expression holds true as the differences between powers increase with larger values of n and b.

PREREQUISITES
  • Understanding of exponential functions and their properties
  • Familiarity with binomial expansion and the Binomial Theorem
  • Basic knowledge of number theory, particularly regarding integer properties
  • Concept of mathematical proofs and inequalities
NEXT STEPS
  • Study the Binomial Theorem in depth, focusing on its historical context and applications
  • Explore the Catalan conjecture and its implications in number theory
  • Learn about mathematical proofs involving inequalities and their significance
  • Investigate other expressions involving powers and their differences for further insights
USEFUL FOR

Mathematicians, students of number theory, educators teaching algebraic concepts, and anyone interested in the properties of exponential functions and their proofs.

e2m2a
Messages
354
Reaction score
13
TL;DR
Is the difference between like powers never equal to 1?
This may seem like a trivial question but I don't know if there is a formal proof for this. Is the following expression never true? a^n-b^n =1, where a >b, a,b,n are positive integer numbers. Was this known since ancient times? Or is there a modern proof for this?
 
Mathematics news on Phys.org
e2m2a said:
Summary: Is the difference between like powers never equal to 1?

This may seem like a trivial question but I don't know if there is a formal proof for this. Is the following expression never true? a^n-b^n =1, where a >b, a,b,n are positive integer numbers. Was this known since ancient times? Or is there a modern proof for this?
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
 
  • Like
Likes   Reactions: nomadreid
PeroK said:
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
The OP also wanted to know whether the proof was modern. Since PeroK's proof is based on a binomial expansion, then the OP can look at https://en.wikipedia.org/wiki/Binomial_theorem#History , which at least shows how far back the tools for this proof existed.
 
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
 
  • Like
Likes   Reactions: nomadreid
PeroK said:
If ##a > b##, then there is a minimum difference between ##a^n## and ##b^n##. If we fix ##b##, then the minimim difference is when ##a = b+1##. And:
$$(b+1)^n - b^n = 1 + nb + \binom n 2 b^2 + \dots nb^{n-1} > 1$$Assuming ##n > 1##, of course.
Ok, thanks for the reply.
 
PeroK said:
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
Thanks for the response.
 
PeroK said:
Although I posted a proof, it's clear from looking at the first few cases that ##a^n - b^n = 1## is impossible for ##n > 1##:
$$1, 4, 9, 16, \dots$$$$1, 8, 27, 64 \dots$$$$1, 16, 81, 256 \dots$$And the differences are clearly only getting larger as ##n## and ##b## increase.
Thanks for answering.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
914
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
7K