A Differences between Actions in Curved Spacetime

  • A
  • Thread starter Thread starter Haorong Wu
  • Start date Start date
  • Tags Tags
    Spacetime
Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
First, in Anastopoulos C, Hu B L. A master equation for gravitational decoherence: probing the textures of spacetime[J]. Classical and Quantum Gravity, 2013, 30(16): 165007. , the Einstein-Hilbert action is used to analysis a quantum matter field interacting with the gravitational field, $$S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .$$

Then, in Spacetime and geometry by Sean M. Carroll, section 9.4, the quantum field theory in curved spacetime consider the following Lagrange density $$L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2) .$$

It appears that in the first paper, the curvature scalar ##R## does not couple to the scalar field, while the one in the second case does.

Are the two actions/Lagrangians describe different situations?
 
Physics news on Phys.org
Haorong Wu said:
Summary:: I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2).
In 4 dimensions and for m = 0, the first action is not conformal invariant while the second one is invariant for the specific value \xi = \frac{1}{6}. Also, the case \xi = 0 is called minimally coupled.
Are the two actions/Lagrangians describe different situations?
Yes they are, for you can convince yourself by deriving the equations of motions and the energy-momentum tensors from both actions.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top