Differentiability of a Complex Function

Click For Summary

Discussion Overview

The discussion revolves around the differentiability of a complex function defined piecewise, specifically examining the function at the point \( z=0 \). Participants explore the implications of the Cauchy-Riemann equations in relation to differentiability, engaging in both theoretical and mathematical reasoning.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that the function \( f(z) \) is differentiable at \( z=0 \) based on the limit definition of differentiability.
  • Others argue that the function is not differentiable at \( z=0 \), despite satisfying the Cauchy-Riemann equations at that point, citing the limit's dependence on the angle \( \theta \) when expressed in polar coordinates.
  • A later reply questions the existence of the limit by suggesting that it varies with \( \theta \), leading to different values as \( r \to 0 \).
  • Participants discuss the implications of the limit's behavior, noting that if the limit existed, it would need to be consistent across all paths approaching \( z=0 \).
  • There is a clarification regarding the interpretation of the limit and its implications for continuity and differentiability.

Areas of Agreement / Disagreement

Participants do not reach consensus; there are competing views on whether the function is differentiable at \( z=0 \, \text{and} \, whether the Cauchy-Riemann equations imply differentiability.

Contextual Notes

Limitations include the dependence on the choice of path in the complex plane and the need for careful consideration of the definitions of differentiability and continuity in the context of complex functions.

shen07
Messages
54
Reaction score
0
$$ f:\mathbb{C}\rightarrow\mathbb{C}
\\
f(z)=\left\{\begin{array} \frac{(\bar{z})^2}/ {z} \quad z\neq0 \\
0 \quad z=0
\end{array}
\right.$$

Show that f is differentiable at z=0, but the Cauchy Riemann Equations hold at z=0.

Well i have tried to start the first part but i am stuck, could you please help me out.

WORKING:
f is diff at z=0

if $$ \lim_{z \to 0} \frac{f(z)-f(0)}{z-0}\; exists\\
\lim_{z\to0}\frac{ \frac{(\bar{z})^2}{z}-0}{z-0}=
\lim_{z\to0}\frac{(\bar{z})^2}{z^2}

$$

Now we get indeterminate form in the limit but how can we differentiate $$\bar{z}$$
 
Physics news on Phys.org
shen07 said:
$$ f:\mathbb{C}\rightarrow\mathbb{C}
\\
f(z)=\left\{\begin{array} \frac{(\bar{z})^2}/ {z} \quad z\neq0 \\
0 \quad z=0
\end{array}
\right.$$

Show that f is not differentiable at z=0, but the Cauchy Riemann Equations hold at z=0.

Well i have tried to start the first part but i am stuck, could you please help me out.

WORKING:
f is diff at z=0

if $$ \lim_{z \to 0} \frac{f(z)-f(0)}{z-0}\; exists\\
\lim_{z\to0}\frac{ \frac{(\bar{z})^2}{z}-0}{z-0}=
\lim_{z\to0}\frac{(\bar{z})^2}{z^2}

$$

Now we get indeterminate form in the limit but how can we differentiate $$\bar{z}$$
There is an important word missing from the statement of the problem. The result should say that f is not differentiable at 0, despite satisfying the C–R equations at that point.

You have correctly shown that the condition for f to be differentiable at 0 is that $$ \lim_{z \to 0} \frac{f(z)-f(0)}{z-0} = \lim_{z\to0}\frac{(\bar{z})^2}{z^2}$$ should exist. To see that the limit does not in fact exist, use the polar form $z = re^{i\theta}$, so that $\bar{z} = re^{-i\theta}$. You should find that the limit as $r\to0$ varies for different values of $\theta$, and is thus not uniquely defined.

To see that the C–R equations hold at 0, write $z=x+iy$, $\bar{z} = x-iy$ and find the partial derivatives of $f(x,y)$ at the origin.
 
Opalg said:
There is an important word missing from the statement of the problem. The result should say that f is not differentiable at 0, despite satisfying the C–R equations at that point.

You have correctly shown that the condition for f to be differentiable at 0 is that $$ \lim_{z \to 0} \frac{f(z)-f(0)}{z-0} = \lim_{z\to0}\frac{(\bar{z})^2}{z^2}$$ should exist. To see that the limit does not in fact exist, use the polar form $z = re^{i\theta}$, so that $\bar{z} = re^{-i\theta}$. You should find that the limit as $r\to0$ varies for different values of $\theta$, and is thus not uniquely defined.

To see that the C–R equations hold at 0, write $z=x+iy$, $\bar{z} = x-iy$ and find the partial derivatives of $f(x,y)$ at the origin.
Well you are right i just miss the not,

$$ \lim_{z \to 0} \frac{f(z)-f(0)}{z-0} = \lim_{z\to0}\frac{(\bar{z})^2}{z^2}$$
now using $z = re^{i\theta}$
$$ \lim_{z\to0}\frac{(\bar{z})^2}{z^2}=\lim_{r\to0} \frac{(re^{-i\theta})^2}{(re^{i\theta})^2}

$$
now the r's cancel out, i didn't understand what you tried to tell me, Could you Clarify Please.
 
If $\theta = 0$ then

$\displaystyle \frac{e^{-i2\theta}}{e^{i2\theta}} = 1$

If $\theta = \frac{\pi}{4}$ then

$\displaystyle \frac{e^{-i2\theta}}{e^{i2\theta}} = \frac{1}{e^{i\pi}} = -1$.

These values are independent of $r$ (as you noted, the $r$'s cancel).

What is your conclusion?
 
Deveno said:
If $\theta = 0$ then

$\displaystyle \frac{e^{-i2\theta}}{e^{i2\theta}} = 1$

If $\theta = \frac{\pi}{4}$ then

$\displaystyle \frac{e^{-i2\theta}}{e^{i2\theta}} = \frac{1}{e^{i\pi}} = -1$.

These values are independent of $r$ (as you noted, the $r$'s cancel).

What is your conclusion?

Since $\theta$ varies, the function is not continuous at z=0 hence Not Differentiable. Right?

MultiVariable Function? is it?
 
Last edited:
If the limit DID exist, we should be able to choose $r > 0$ such that on a disk centered at the origin with radius $r$, the quantity:

$\displaystyle \frac{(re^{-i\theta})^2}{(re^{i\theta})^2}$ is always within $\epsilon$ of the limit, for ANY $\epsilon > 0$.

What happens if we choose $0 < \epsilon < 1$? Will ANY $r > 0$ work?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K