KillerZ
- 116
- 0
Homework Statement
Solve the given differential equation by using an appropriate substitution.
Homework Equations
x\frac{dy}{dx} = y + \sqrt{x^{2} - y^{2}}, x > 0
The Attempt at a Solution
x\frac{dy}{dx} = y + \sqrt{x^{2} - y^{2}}
xdy = (y + \sqrt{x^{2} - y^{2}})dx
y = ux
u = \frac{y}{x}
dy = udx + xdu
x[udx + xdu] = (ux + \sqrt{x^{2} - u^{2}x^{2}})dx
xudx + x^{2}du = uxdx + x\sqrt{1 - u^{2}}dx
\frac{du}{\sqrt{1 - u^{2}}} = \frac{dx}{x}
\frac{du}{\sqrt{1 - u^{2}}} - \frac{dx}{x} = 0
\int\frac{du}{\sqrt{1 - u^{2}}} - \int\frac{dx}{x} = 0
sin^{-1}(u) - ln|x| = ln|c|
sin^{-1}(\frac{y}{x}) - ln|x| = ln|c|
e^{sin^{-1}(\frac{y}{x})} - x = c
Last edited: