Differential equations and initial value problems

Click For Summary
SUMMARY

The discussion focuses on solving two initial value problems involving differential equations. The first equation, $y' = xe^{-\sin(x)} - y \cos(x)$, is solved using an integrating factor, resulting in the solution $y = \frac{x^2 e^{-\sin(x)}}{2} + Ce^{-\sin(x)}$. The second equation, $\frac{du}{dt} = \frac{2t + \sec^2 t}{2u}$ with initial condition $u(0) = 4$, leads to the solution $u = \sqrt{t^2 + \tan(t) + 16}$. The importance of correctly applying integration techniques and managing constants of integration is emphasized.

PREREQUISITES
  • Understanding of differential equations and initial value problems
  • Familiarity with integrating factors in solving linear differential equations
  • Knowledge of basic integration techniques, including integration by substitution
  • Ability to manipulate and solve algebraic expressions involving constants
NEXT STEPS
  • Study the method of integrating factors for linear differential equations
  • Learn about separation of variables in solving differential equations
  • Explore the application of initial conditions in determining constants of integration
  • Investigate more complex initial value problems involving higher-order differential equations
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and differential equations, as well as educators seeking to enhance their understanding of initial value problems and integration techniques.

ineedhelpnow
Messages
649
Reaction score
0
did i do these two questions right?

#1
$y'=xe^{- \sin\left({x}\right)}-y \cos\left({x}\right)$

$y'+y \cos\left({x}\right) = xe^{-\sin\left({x}\right)}$$I(x)=e^{\int \ \cos\left({x}\right)dx}$

$\int \ \cos\left({x}\right)dx=\sin\left({x}\right)=e^{\sin\left({x}\right)}$$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=xe^{-\sin\left({x}\right)}*e^{\sin\left({x}\right)}$

$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=x$

$(ye^{\sin\left({x}\right)})'=x$

$ye^{\sin\left({x}\right)}=\int \ x dx$

$ye^{\sin\left({x}\right)}= \frac{x^2}{2}+C$

$y= \frac{x^2e ^{\sin\left({x}\right)}}{2}+Ce^{-\sin\left({x}\right)}$
#2
$\frac{du}{dt}=\frac{2t+sec^2t}{2u}$ and $u(0)=4$

$2u du = 2t+ sec^2t dt$

$\int \ 2u du=\int \ (2t+ sec^2t) dt$

$\frac{2u^3}{3}=t^2+\tan\left({t}\right)+C$

$u=\sqrt[3]{\frac{3(t^2+\tan\left({t}\right)+C)}{2}}$

now $u(0)=4:$

$4=(\frac{3(0^2+\tan\left({0}\right)+C)}{2})^{1/3}$

$4=(\frac{3C}{2})^{1/3}$

$4^3=\frac{3C}{2}$

$128=3C$

$C=\frac{128}{3}$$u=(\frac{3(t^2+\tan\left({t}\right)+\frac{128}{3})}{2})^{1/3}$
 
Physics news on Phys.org
ineedhelpnow said:
did i do these two questions right?

#1
$y'=xe^{- \sin\left({x}\right)}-y \cos\left({x}\right)$

$y'+y \cos\left({x}\right) = xe^{-\sin\left({x}\right)}$$I(x)=e^{\int \ \cos\left({x}\right)dx}$

$\int \ \cos\left({x}\right)dx=\sin\left({x}\right)=e^{\sin\left({x}\right)}$$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=xe^{-\sin\left({x}\right)}*e^{\sin\left({x}\right)}$

$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=x$

$(ye^{\sin\left({x}\right)})'=x$

$ye^{\sin\left({x}\right)}=\int \ x dx$

$ye^{\sin\left({x}\right)}= \frac{x^2}{2}+C$

$y= \frac{x^2e ^{\sin\left({x}\right)}}{2}+Ce^{-\sin\left({x}\right)}$

It is right,you just forgot a minus sign..The solution is :
$$y=\frac{x^2e ^{-\sin\left({x}\right)}}{2}+Ce^{-\sin\left({x}\right)}$$

ineedhelpnow said:
#2
$\frac{du}{dt}=\frac{2t+sec^2t}{2u}$ and $u(0)=4$

$2u du = 2t+ sec^2t dt$

$\int \ 2u du=\int \ (2t+ sec^2t) dt$

$\frac{2u^3}{3}=t^2+\tan\left({t}\right)+C$

From $\int \ 2u du=\int \ (2t+ sec^2t) dt$ we get:

$$u^2=t^2+ \tan t +C$$
 
thanks, its always the little things that slip past me and i don't even now how i messed up like that on the second one :o. so for the second one:

$u=\sqrt{t^2+ \tan\left({t}\right)+C}$

$u(0)=4$, so

$4=\sqrt{0^2+ \tan\left({0}\right)+C}$

$4=\sqrt{C}$

$C=16$

$u=\sqrt{t^2+ \tan\left({t}\right)+16}$
 
ineedhelpnow said:
thanks, its always the little things that slip past me and i don't even now how i messed up like that on the second one :o. so for the second one:

$u=\sqrt{t^2+ \tan\left({t}\right)+C}$

$u(0)=4$, so

$4=\sqrt{0^2+ \tan\left({0}\right)+C}$

$4=\sqrt{C}$

$C=16$

$u=\sqrt{t^2+ \tan\left({t}\right)+16}$

It is :
$$u^2=t^2+ \tan t+C \Rightarrow
u= \pm \sqrt{t^2+ \tan t+C}$$

but as $u(0)=4$, we reject the negative solution,so it is as you have mentioned.. (Smile)
 
Here's an alternate way of dealing with the constant of integration you may find useful...

Suppose you have the initial value problem (IVP):

$$\frac{dy}{dx}=f(x)$$ where $$y\left(x_0\right)=y_0$$

Now, separating variables and using indefinite integrals, we may write:

$$\int\,dy=\int f(x)\,dx$$

And upon integrating, we find

$$y(x)=F(x)+C$$ where $$\frac{d}{dx}\left(F(x) \right)=f(x)$$

Using the initial condition, we get

$$y\left(x_0 \right)=F\left(x_0 \right)+C$$

Solving for $C$ and using $$y\left(x_0\right)=y_0$$, we obtain:

$$C=y_0-F\left(x_0 \right)$$ thus:

$$y(x)=F(x)+y_0-F\left(x_0 \right)$$

which we may rewrite as:

$$y(x)-y_0=F(x)-F\left(x_0 \right)$$

Now, we may rewrite this, using the anti-derivative form of the fundamental theorem of calculus, as:

$$\int_{y_0}^{y(x)}\,dy=\int_{x_0}^{x}f(x)\,dx$$

Now, since the variable of integration gets integrated out, it is therefore considered a "dummy variable" and since it is considered good form not to use the same variable in the boundaries as we use for integration, we may switch these dummy variables and write:

$$\int_{y_0}^{y(x)}\,du=\int_{x_0}^{x}f(v)\,dv$$

This demonstrates that the two methods are equivalent.

Using the boundaries (the initial and final values) in the limits of integration eliminates the need to solve for the constant of integration, and I find it a more intuitive and cleaner approach to separable initial value problems.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K