MHB Differentiating Bessel functions

alexmahone
Messages
303
Reaction score
0
Differentiate $x^{1/2}\left[c_1J_{1/4}(x^2/2)+c_2J_{-1/4}(x^2/2)\right]$.
 
Physics news on Phys.org
Alexmahone said:
Differentiate $x^{1/2}\left[c_1J_{1/4}(x^2/2)+c_2J_{-1/4}(x^2/2)\right]$.

A general formula is...

$\displaystyle J_{\nu}^{'}(x)= \frac{1}{2}\ \{J_{\nu-1}(x)-J_{\nu+1}(x)\}$ (1)

Kind regards

$\chi$ $\sigma$
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
257
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
619
  • · Replies 1 ·
Replies
1
Views
3K