Bessel functions of imaginary order

  • #1
2
1
TL;DR Summary
Is it true that the complex conjugate of Hankel function (H) of first kind of order ia is equal to H of second kind of order -ia, so H of first kind and its complex conjugate are linearly independent.
In Wikipedia article on Bessel functions there is an integral definition of “non-integer order” a (“alpha”). For imaginary order ia I get that Jia* = J-ia, where * is complex conjugate and ia and -ia are subscripts. Then in same article there is a definition of Neumann function, again for “non-integer order”. If I again use it for imaginary order, I get that Yia* = Y-ia. So then for Hankel functions I get that H^1ia* = H^2-ia.

Is that valid for imaginary orders and does it then mean that H^1 and its complex conjugate are linearly independent? If the above is not valid, is there some other way to show the independence?
 
  • #2
Bessel function Wiki

Yes, they are linearly independent. For integral and half integral ##\alpha## the Hankel are the radial wave functions for incoming and outgoing waves. In the differential equation (first equation in the linked article) ##\alpha## appears as ##\alpha^2##. This implies several things about the equations solutions. First, solutions are analytic functions of ##\alpha## and second, both ##y_\alpha(x)## and ##y_{-\alpha}(x)## obey the very same differential equation. Being a linear second order differential, the are at most two linearly independent solutions, all others expressible as a linear combination.
 
  • #3
Thank you jedishrfu for moving this thread to a more appropriate place. While I got the Bessel equation from physics, the topic is indeed more math than physics. And thank you Paul Colby for confirming my assumptions.
 

Suggested for: Bessel functions of imaginary order

Replies
3
Views
1K
Replies
1
Views
625
Replies
1
Views
9K
Replies
10
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
0
Views
1K
Replies
2
Views
1K
Back
Top