Dimensional analysis - atomic bomb explosion radius

Click For Summary
SUMMARY

The discussion focuses on the dimensional analysis of the radius of an atomic explosion's shock wave, denoted as ##R##, which is expressed as a function of energy ##E##, time ##t##, ambient air density ##\rho_0##, and ambient air pressure ##p_0##. The relationship is established as ##R=\frac{Et^2}{\rho_0}g(\pi_1)##, where ##\pi_1## is a dimensionless variable. Participants confirm that the expression for ##\pi_1 = \frac{p_0 R^3}{E}## is dimensionally consistent, while also identifying that the original expression for ##R## is not homogeneous, necessitating a correction to ##\frac{ET^2}{\rho_0}## raised to the power of 1/5.

PREREQUISITES
  • Understanding of dimensional analysis
  • Familiarity with physical units (mass, length, time)
  • Knowledge of energy units and their implications in physics
  • Basic principles of shock wave dynamics
NEXT STEPS
  • Study dimensional analysis techniques in fluid dynamics
  • Explore the relationship between energy release and shock wave propagation
  • Research the implications of dimensional homogeneity in physical equations
  • Learn about the mathematical modeling of explosive phenomena
USEFUL FOR

Students and professionals in physics, particularly those focusing on fluid dynamics, explosive dynamics, and dimensional analysis, will benefit from this discussion.

vector
Messages
15
Reaction score
0

Homework Statement

:[/B]

An atomic explosion can be approximated as the release of a large amount of energy ##E## from a point source. The explosion results in an expanding spherical fireball bounded by powerful shock wave. Let ##R## be the radius of the shock wave and assume that ##R=f(E,T,\rho_0, p_0)## where ##t## is the elapsed time after the explosion takes place, ##\rho_0## is the ambient air density and ##p_0## is the ambient air pressure. Using dimensional analysis show that ##R=\frac{Et^2}{\rho_0}g(\pi_1)## where ##\pi_1## is a dimensionless variable. Choose it so that it involves ##E## to a negative exponent. What is ##\pi_1##?

Homework Equations



##R=f(E,T,\rho_0, p_0)##
##R=\frac{Et^2}{\rho_0}g(\pi_1)## where ##\pi_1## is a dimensionless variable

The Attempt at a Solution



The problem is that the relationship does not appear to be homogeneous. If ##\pi_1## is dimensionless, then the units of ##\frac{Et^2}{\rho_0}## must be the same as the units of ##R##. However,

##[E] = ML^2 T^{-2}##
##[t] = T##
##[\rho_0] = ML^{-3}##
##[p_0] = ML^{-1}T^{-2}##
##[R]=L##, where M is express in kilograms, T is in seconds, L is in meters.

What is it that I'm not getting right here?

On the other hand, I expressed ##\pi_1## as follows: ##\pi_1 = \frac{p_0 R^3}{E}##. Is this correct?

Thank you!
 
Physics news on Phys.org
vector said:

The Attempt at a Solution



The problem is that the relationship does not appear to be homogeneous. If ##\pi_1## is dimensionless, then the units of ##\frac{Et^2}{\rho_0}## must be the same as the units of ##R##. However,

##[E] = ML^2 T^{-2}##
##[t] = T##
##[\rho_0] = ML^{-3}##
##[p_0] = ML^{-1}T^{-2}##
##[R]=L##, where M is express in kilograms, T is in seconds, L is in meters.

What is it that I'm not getting right here?

On the other hand, I expressed ##\pi_1## as follows: ##\pi_1 = \frac{p_0 R^3}{E}##. Is this correct?

Thank you!
yes, it's correct. The dimension ##p_0 R^3## is same for E.
##ML^{-1}T^{-2}## * ##L^{3}## = ##ML^2T^{-2}##
 
Last edited:
majid313mirzae said:
yes, it's correct. The dimension ##p_0 R^3## is same for E.
##ML^{-1}T^{-2}## * ##L^{3}## = ##ML^2T^{-2}##

Thanks. But do you think the expression given in the problem statement is correct at all? The problem is that ##R## has units of ##L##, but ##\frac{Et^2}{\rho_0}## has units of ##L^{-5}##.
 
vector said:
Thanks. But do you think the expression given in the problem statement is correct at all? The problem is that ##R## has units of ##L##, but ##\frac{Et^2}{\rho_0}## has units of ##L^{-5}##.
unit of ##Et^2## is ##ML^2T^{-2} * T^2## then ##ML^2##
so unit of ##R## is ##\frac{ML^2}{ML{-3}}## = ##L^5##
 
Sorry, I meant ##L^5##. So then the expression is not quite homogeneous. Namely, the units of ##R## are ##L##, but the units of ##\frac{ET^2}{\rho_0}## are ##L^5##. Am I correct?
 
yes , you are. Below file can be useful
http://dspace.mit.edu/bitstream/handle/1721.1/42045/228875559.pdf?sequence=1
 
Last edited by a moderator:
Thanks. So, the ##\frac{ET^2}{\rho_0}## should be raised to the power of 1/5, shouldn't it?
 
vector said:
Thanks. So, the ##\frac{ET^2}{\rho_0}## should be raised to the power of 1/5, shouldn't it?

yes, it's right
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K