Dirac "GTR" Eq. 27.11 -- how to show that a boundary term vanishes?

Click For Summary

Discussion Overview

The discussion centers on Dirac's treatment of boundary terms in the context of deriving Einstein's field equations and the geodesic equation from the variation of actions for gravity and matter, specifically focusing on the boundary term in equation (27.11) of his "General Theory of Relativity". The scope includes theoretical considerations and mathematical reasoning related to variational principles in general relativity.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant notes that the momentum of matter is defined as ##p^\mu=\rho v^\mu \sqrt{-g}## and discusses the implications of varying this momentum in the context of boundary terms.
  • Another participant suggests that the boundary term vanishes because the vector field ##p## will go to zero sufficiently fast at infinity, leading to the conclusion that the boundary integral is zero.
  • A different viewpoint raises concerns about the assumption that matter density ##\rho## vanishes at the boundary, questioning whether this holds true in all scenarios, particularly in a closed universe.
  • One participant introduces the idea of integrating a physical vector field over a sphere at infinity, arguing that the integral vanishes if the field decays sufficiently fast, which is a condition for the boundary term to vanish.
  • Another participant concludes that while the boundary term may not vanish in general, the integration by parts leads to separate integrals that must vanish, thus implying that the boundary term can be disregarded in this context.

Areas of Agreement / Disagreement

Participants express differing views on the conditions under which the boundary term vanishes. Some argue it does so due to the behavior of the momentum field at infinity, while others question the validity of this assumption and highlight the complexities involved in varying the action.

Contextual Notes

There are unresolved assumptions regarding the behavior of the matter density at the boundary and the implications of integrating over compact versus non-compact volumes. The discussion reflects a range of perspectives on the mathematical treatment of boundary terms in variational principles.

Kostik
Messages
274
Reaction score
32
TL;DR
In Dirac's "General Theory of Relativity", Dirac derives Einstein's field equations and the geodesic equation from the variation ##\delta(I_g+I_m)=0## of the actions for gravity and matter. The two dynamical variables in the variation are ##g_{\mu\nu}## and ##p^\mu## which satisfies ##\delta p^\mu = (p^\nu b^\mu - p^\mu b^\nu)_{,\nu}## where ##b^\mu## is an arbitrary displacements of an element of matter. He discards a boundary term during partial integration that is not easily (?) justified!
In Dirac's "General Theory of Relativity", p. 53, eq. (27.11), Dirac is deriving Einstein's field equations and the geodesic equation from the variation ##\delta(I_g+I_m)=0## of the actions for gravity and matter. Here ##p^\mu=\rho v^\mu \sqrt{-g}## is the momentum of an element of matter. He makes arbitrary displacements of an element of matter ##b^\mu##. The two dynamical variables in the variation are ##g_{\mu\nu}## and ##p^\mu## which satisfies ##\delta p^\mu = (p^\nu b^\mu - p^\mu b^\nu)_{,\nu}=0##.

The action is over a 4-dimensional volume ##M##. Dirac integrates by parts: $$\int_M v_\mu (p^\nu b^\mu - p^\mu b^\nu)_{,\nu} \, d^4 x
= \int_M [v_\mu (p^\nu b^\mu - p^\mu b^\nu)]_{,\nu} \, d^4 x
- \int_M v_{\mu,\nu} (p^\nu b^\mu - p^\mu b^\nu) \, d^4 x .$$ Remember: on the boundary ##\partial M##: $$(p^\nu b^\mu - p^\mu b^\nu)_{,\nu}=0.$$ (It's unusual for a divergence to vanish on a boundary, but remember this is actually a variation ##\delta p^\mu = (p^\nu b^\mu - p^\mu b^\nu)_{,\nu}##. As ##p^\mu## is one of the dynamical variables, it is kept constant on the boundary. Hence, the variation ##\delta p^\mu=0## on the boundary.)

Dirac assumes the boundary term vanishes. How do we show this? $$\int_M [v_\mu (p^\nu b^\mu - p^\mu b^\nu)]_{,\nu} \, d^4 x = \int_{\partial M} v_\mu (p^\nu b^\mu - p^\mu b^\nu) \, dS_\nu = 0 \quad (\text{Show!})$$ where ##dS_\nu## is the oriented hypersurface element in 3D space.

If ##v_\mu (p^\nu b^\mu - p^\mu b^\nu)## were constant on the boundary, the result would be trivial. But this is not the case!

One can also write this integral: $$\int_M [v_\mu (p^\nu b^\mu - p^\mu b^\nu)]_{,\nu} \, d^4 x
= \int_{\partial M} v_\mu n_\nu (p^\nu b^\mu - p^\mu b^\nu) \, \sqrt{|h|} \, d^3 y$$ where ##n_\nu## is the "oriented unit normal vector" on ##\partial M##. (Here I am supposing that the boundary ##\partial M## can be parameterized by ##x^\nu = x^\nu (y^m)##, ##m=1,2,3## and ##h## is the determinant of the matrix ##h_{mn}=g_{\mu\nu}\frac{\partial x^\mu}{\partial y^m}\frac{\partial x^\nu}{\partial y^n}## ... but this is just linear algebra / change of variable stuff, and isn't important to the problem at hand.)

To repeat, the key fact that I have to work with is that, on the boundary ##\partial M##:
$$(p^\nu b^\mu - p^\mu b^\nu)_{,\nu}=0.$$
 
Physics news on Phys.org
I don't think it needs to be any more complicated than the fact that, for any physical (bounded) matter distribution, the vector field ##p## is going to vanish sufficiently fast toward infinity, i.e. ##p{|}_{\partial} = 0## and the boundary term ##\int_{\partial} dS \ n_{\nu} v_{\mu} (p^{\nu} b^{\mu} - p^{\mu} b^{\nu}) = 0##
 
  • Like
Likes   Reactions: Kostik
I thought of this, too: since ##p^\mu = \rho v^\mu \sqrt{-g}##, one can always consider a 4-dim. "cylinder" of spacetime between two time coordinates ##T_1## and ##T_2##, and the ball ##r=R##, and let ##R## be sufficiently large so as to encompass all the matter in existence. Then ##\rho=0## on the boundary, hence ##p^\mu=0##.

However, I prefer to solve these boundary term issues with compact volumes. First, consider that this method does not work when trying to vary the Hilbert-Einstein action -- that's why the Gibbons-Hawking-York boundary term is usually added. Second, can I be sure that ##\rho=0## sufficiently far away? What if the matter-energy density of a (closed?) universe never vanishes?
 
Take any physical vector field ##X## (e.g. your term involving ##p^{\mu}##) and integrate it over the ##n-1## sphere ##\lim_{r\rightarrow \infty} S_r##$$\int dS \ n_{\mu} X^{\mu} = \int dS \ r^{n-1} \hat{n}_{\mu} X^{\mu}$$so the integral vanishes if ##X = O(r^{-n})##, which is what we mean by assuming the field vanishes sufficiently quickly at spatial infinity.
 
OK, I got it. The solution is physics, not math. I believe the integral, in general, need not vanish. However, going back to the variation ##\delta(I_g+I_m)=0##, one has two integrals, and integration by parts turns the second one into two more. One can argue that all three integrals must vanish separately. Hence, the boundary term integral goes away, and the other two are left to yield the EFE and geodesic equation.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
785
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 76 ·
3
Replies
76
Views
4K