A Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric with ##r \le 2m##

Kostik
Messages
274
Reaction score
32
TL;DR Summary
Do Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric have any recognized name?
Dirac in his "GTR" (Chap 19, page 34-35) finds a coordinate system ##(\tau, \rho)## which has no coordinate singularity at ##r=2m##. Explicitly, the transformation looks like (after some algebra):
$$\tau=t + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
$$\rho=t + \frac{2r}{3}\sqrt{\frac{r}{2m}} + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
The first coordinate ##\tau## is similar to Gullstrand–Painlevé coordinates, except for the first term with an ##r^{3/2}## factor.

Is there a specific name for these coordinates attributable to their original discoverer?
 
Last edited:
Physics news on Phys.org
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
 
Ibix said:
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
Thanks - yes, fixed it.
 
Thanks! That looks exactly right.
 
I found a superb analysis of these coordinates in Landau & Lifshitz Vol 2.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top