A Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric with ##r \le 2m##

Kostik
Messages
269
Reaction score
32
TL;DR Summary
Do Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric have any recognized name?
Dirac in his "GTR" (Chap 19, page 34-35) finds a coordinate system ##(\tau, \rho)## which has no coordinate singularity at ##r=2m##. Explicitly, the transformation looks like (after some algebra):
$$\tau=t + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
$$\rho=t + \frac{2r}{3}\sqrt{\frac{r}{2m}} + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
The first coordinate ##\tau## is similar to Gullstrand–Painlevé coordinates, except for the first term with an ##r^{3/2}## factor.

Is there a specific name for these coordinates attributable to their original discoverer?
 
Last edited:
Physics news on Phys.org
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
 
Ibix said:
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
Thanks - yes, fixed it.
 
Thanks! That looks exactly right.
 
I found a superb analysis of these coordinates in Landau & Lifshitz Vol 2.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top