A Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric with ##r \le 2m##

Click For Summary
Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric eliminate the coordinate singularity at ##r=2m##, with specific transformations provided. The coordinate ##\tau## resembles Gullstrand–Painlevé coordinates but includes an additional ##r^{3/2}## term. The discussion touches on the potential naming of these coordinates, suggesting they may be related to Lemaitre coordinates. A correction was made regarding a typo in the original expressions. The coordinates are further analyzed in Landau & Lifshitz Vol 2, providing additional insights.
Kostik
Messages
274
Reaction score
32
TL;DR
Do Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric have any recognized name?
Dirac in his "GTR" (Chap 19, page 34-35) finds a coordinate system ##(\tau, \rho)## which has no coordinate singularity at ##r=2m##. Explicitly, the transformation looks like (after some algebra):
$$\tau=t + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
$$\rho=t + \frac{2r}{3}\sqrt{\frac{r}{2m}} + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
The first coordinate ##\tau## is similar to Gullstrand–Painlevé coordinates, except for the first term with an ##r^{3/2}## factor.

Is there a specific name for these coordinates attributable to their original discoverer?
 
Last edited:
Physics news on Phys.org
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
 
Ibix said:
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
Thanks - yes, fixed it.
 
Thanks! That looks exactly right.
 
I found a superb analysis of these coordinates in Landau & Lifshitz Vol 2.
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...