Graduate Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric with ##r \le 2m##

Click For Summary
Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric eliminate the coordinate singularity at ##r=2m##, with specific transformations provided. The coordinate ##\tau## resembles Gullstrand–Painlevé coordinates but includes an additional ##r^{3/2}## term. The discussion touches on the potential naming of these coordinates, suggesting they may be related to Lemaitre coordinates. A correction was made regarding a typo in the original expressions. The coordinates are further analyzed in Landau & Lifshitz Vol 2, providing additional insights.
Kostik
Messages
274
Reaction score
32
TL;DR
Do Dirac's coordinates ##(\tau, \rho)## for the Schwarzschild metric have any recognized name?
Dirac in his "GTR" (Chap 19, page 34-35) finds a coordinate system ##(\tau, \rho)## which has no coordinate singularity at ##r=2m##. Explicitly, the transformation looks like (after some algebra):
$$\tau=t + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
$$\rho=t + \frac{2r}{3}\sqrt{\frac{r}{2m}} + 4m\sqrt{\frac{r}{2m}} + 2m\log{\frac{\sqrt{r/2m}-1}{\sqrt{r/2m}+1}}$$
The first coordinate ##\tau## is similar to Gullstrand–Painlevé coordinates, except for the first term with an ##r^{3/2}## factor.

Is there a specific name for these coordinates attributable to their original discoverer?
 
Last edited:
Physics news on Phys.org
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
 
Ibix said:
I'm not familiar with it, but I can have a look round later. Your last term in both expressions reduces to zero, though - presumably a typo and probably worth correcting.
Thanks - yes, fixed it.
 
Thanks! That looks exactly right.
 
I found a superb analysis of these coordinates in Landau & Lifshitz Vol 2.
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 8 ·
Replies
8
Views
618
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K