MHB Direct sum of p-primary components of an R-module counterexample?

Click For Summary
The discussion centers on the properties of the $x$-torsion of $R$-modules, specifically questioning the equality of $T_x(M \oplus N)$ and $T_x(M) \oplus T_x(N)$ when $R$ is an integral domain. It is established that this equality holds only if $R$ is a principal ideal domain (PID). A counterexample is sought to demonstrate that the equality does not hold in the case of an integral domain. The proof presented highlights that while elements in $T_x(M) \oplus T_x(N)$ imply membership in $T_x(M \oplus N)$, the reverse is not necessarily true, indicating a failure of the equality. The discussion emphasizes the need for a counterexample to solidify this understanding.
kalish1
Messages
79
Reaction score
0
Let $x \in R - \{0\},$ where $R$ is a domain.

Define $T_x(M) = \{m \in M \ | \ x^n m=0 \ \ \mathrm{for \ some} \ n \in \mathbb{N}\}$ as the $x$-torsion of $M.$

I know that $T_x(M \oplus N) = T_x(M) \oplus T_x(N)$ for $R$-modules $M,N$ only if $R$ is a PID.

But I can't think of a counterexample for $R$ an integral domain.

Any ideas?
 
Physics news on Phys.org
kalish said:
Let $x \in R - \{0\},$ where $R$ is a domain.

Define $T_x(M) = \{m \in M \ | \ x^n m=0 \ \ \mathrm{for \ some} \ n \in \mathbb{N}\}$ as the $x$-torsion of $M.$

I know that $T_x(M \oplus N) = T_x(M) \oplus T_x(N)$ for $R$-modules $M,N$ only if $R$ is a PID.

But I can't think of a counterexample for $R$ an integral domain.

Any ideas?

Here is the modified problem:

Let $x \in R - \{0\},$ where $R$ is a domain.

Define $T_x(M) = \{m \in M \ | \ x^n m=0 \ \ \mathrm{for \ some} \ n \in \mathbb{N}\}$ as the $x$-torsion of $M.$

I need to show that $T_x(M \oplus N) = T_x(M) \oplus T_x(N)$ for $R$-modules $M,N$ or show that there is a counterexample.

Why is this proof wrong?

Take $(a,b)\in T_x(M\oplus N)$. Then there exist $m,n \in \mathbb{N},$ not necessarily equal, such that $x^m a + x^n b=0.$ Take $(a,b)\in T_x(M) \oplus T_x(N)$. Then there exist $m,n \in \mathbb{N}$ such that $x^m a=0$ and $x^n b=0.$ So if $(a,b)\in T_x(M) \oplus T_x(N),$ then $(a,b)\in T_x(M\oplus N).$ But the converse is not true. Thus $T(M \oplus N) \neq T(M) \oplus T(N).$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
881
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
782
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K