MHB Direct Sum Property: Proving Uniqueness

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

I encountered this question and thought about it several hours. I am writing down my answer. I would greatly appreciate if somebody could find a fault in my answer or else confirm it is correct. :)

Problem:

Let \(V_1,\,\cdots,\,V_k\) be subspaces in a vector space \(V\), \(V=V_1+\cdots+V_k\). Show that the sum is direct iff there is at least one \(v\in V\) such that \(v=v_1+\cdots+v_k\) where \(v_i\in V_i\), in a unique way.

My Solution:

If \(V=V_1\oplus \cdots \oplus V_k\) then by the definition of the direct product each \(v\in V\) can be uniquely written as \(v=v_1+\cdots+v_k \) where \(v_i\in V_i\). So the forward implication is clearly true.

Now let us prove the reverse direction. There exist and element \(v\in V\) such that \(v=v_1+\cdots+v_k\) where \(v_i\in V_i\), in a unique way. Suppose that the sum is not a direct sum. Then there exist at least one element \(x\in V\) such that \(x\) has two different representations,

\[x=x_1+\cdots+x_k\mbox{ and }x=x'_1+\cdots+x'_k\]

where \(x_i,\,x'_i\in V_i\). Now there exist some \(v_0\in V\) such that, \(v=x+v_0\). Hence,

\[v=x_1+\cdots+x_k+v_0\mbox{ and }v=x'_1+\cdots+x'_k+v_0\]

Now since we can write \(v_0=v_1^0+\cdots+v_k^0\), we get,

\[v=(x_1+v^0_1)+\cdots+(x_k+v^0_k)\mbox{ and }v=(x'_1+v^0_1)+\cdots+(x'_k+v^0_k)\]

Note that, \(x_i+v_i^0\in V_i\) and \(x'_i+v_i^0\in V_i\).

But since \(v\) has a unique representation \(v=v_1+\cdots+v_k\) we have,

\[v_1=x_1+v^0_1=x'_1+v^0_1\]

\[v_2=x_2+v^0_2=x'_2+v^0_2\]

and generally,

\[v_i=x_i+v^0_i=x'_i+v^0_i\]

Therefore,

\[x_i=x'_i\mbox{ for all }i\]

Therefore we arrive at a contradiction. The sum must be direct.
 
Last edited:
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

I encountered this question and thought about it several hours. I am writing down my answer. I would greatly appreciate if somebody could find a fault in my answer or else confirm it is correct. :)

Problem:

Let \(V_1,\,\cdots,\,V_k\) be subspaces in a vector space \(V\), \(V=V_1+\cdots+V_k\). Show that the sum is direct iff there is at least one \(v\in V\) such that \(v=v_1+\cdots+v_k\) where \(v_i\in V_i\), in a unique way.

My Solution:

If \(V=V_1\oplus \cdots \oplus V_k\) then by the definition of the direct product each \(v\in V\) can be uniquely written as \(v=v_1+\cdots+v_k \) where \(v_i\in V_i\). So the forward implication is clearly true.

Now let us prove the reverse direction. There exist and element \(v\in V\) such that \(v=v_1+\cdots+v_k\) where \(v_i\in V_i\), in a unique way. Suppose that the sum is not a direct sum. Then there exist at least one element \(x\in V\) such that \(x\) has two different representations,

\[x=x_1+\cdots+x_k\mbox{ and }x=x'_1+\cdots+x'_k\]

where \(x_i,\,x'_i\in V_i\). Now there exist some \(v_0\in V\) such that, \(v=x+v_0\). Hence,

\[v=x_1+\cdots+x_k+v_0\mbox{ and }v=x'_1+\cdots+x'_k+v_0\]

Now since we can write \(v_0=v_1^0+\cdots+v_k^0\), we get,

\[v=(x_1+v^0_1)+\cdots+(x_k+v^0_k)\mbox{ and }v=(x'_1+v^0_1)+\cdots+(x'_k+v^0_k)\]

Note that, \(x_i+v_i^0\in V_i\) and \(x'_i+v_i^0\in V_i\).

But since \(v\) has a unique representation \(v=v_1+\cdots+v_k\) we have,

\[v_1=x_1+v^0_1=x'_1+v^0_1\]

\[v_2=x_2+v^0_1=x'_2+v^0_1\]

and generally,

\[v_i=x_i+v^0_1=x'_i+v^0_1\]
A typo here. It should be $v_i=x_i+v^0_i=x'_i+v^0_i$
The rest is correct.
 
caffeinemachine said:
A typo here. It should be $v_i=x_i+v^0_i=x'_i+v^0_i$
The rest is correct.

Yeah, I was typing it too fast, didn't check much for typos. I have edited it in the original post. :) Thank you very much for the confirmation and pointing out the typo. I really appreciate it. I am confident that this and the several other questions I posted recently are correct, but just want to get the opinion of everybody. I have a exam coming up and these are from a sample test. :)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top