MHB Discover Positive Real Solutions in a System of Equations

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on finding positive real solutions for a system of equations involving variables \( a_1 \) to \( a_{100} \). By applying the AM-GM inequality, it is established that the product of the equations leads to the conclusion that all inequalities must hold as equalities. This results in a relationship where each variable is inversely related to the next, specifically \( a_1 = \frac{1}{a_2} \), \( a_2 = \frac{1}{a_3} \), and so forth. Ultimately, the solutions are determined to be \( a_1 = 2 \) and \( a_2 = \frac{1}{2} \), repeating this pattern throughout the system. The method effectively demonstrates how to derive the solutions systematically.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive real solutions of the system below:

$a_1+\dfrac{1}{a_2}=4,\,a_2+\dfrac{1}{a_3}=1,\cdots,a_{99}+\dfrac{1}{a_{100}}=4,\,a_{100}+\dfrac{1}{a_1}=1$
 
Mathematics news on Phys.org
Every term, $a_i$ can be expressed by $a_1$ as follows:
\[a_k = \frac{(k-1)-(\frac{k}{2}-1)a_1}{2k-(k-1)a_1} \; \; \; \; k = 2,4,..,100. \\\\\\ a_j = \frac{2(j-1)-(j-2)a_1}{j-\left ( \frac{j-1}{2} \right )a_1}\; \; \; j =1,3,5,..,99. \\\\\\ a_{100}=\frac{99-49a_1}{200-99a_1}\; \; \; \; \; \;and\;\;\;\;\; a_{100}+\frac{1}{a_1}=1\Rightarrow a_1^2-4a_1+4 = 0\]
The positive (and only) solution is: $a_1 = 2$

So
\[a_k = \frac{1}{2}\; \; \; k = 2,4,..,100 \\\\ a_j = 2\; \; \; \; j = 1,3,..,99\]
 
Thanks for participating, lfdahl! :) I think it really is a great idea to relate $a_{100}$ with $a_1$ again and with the two well defined formulas, how to solve further would then be as clear as daylight. Well done!:)

Another method that I saw online that I would like to share:

By AM-GM:

$a_1+\dfrac{1}{a_2}\ge2\sqrt{\dfrac{a_1}{a_2}},\,\cdots,\,a_{100}+\dfrac{1}{a_1}\ge2\sqrt{\dfrac{a_{100}}{a_1}}$

Multiplying we get

$\left( a_1+\dfrac{1}{a_2} \right)\left( a_2+\dfrac{1}{a_3} \right)\cdots\left( a_{100}+\dfrac{1}{a_1} \right)\ge2^{100}$,

From the system of equations we get

$\left( a_1+\dfrac{1}{a_2} \right)\left( a_2+\dfrac{1}{a_3} \right)\cdots\left( a_{100}+\dfrac{1}{a_1} \right)=2^{100}$,

so all thoseinequalities are equalities, i.e.

$a_1+\dfrac{1}{a_2}=2\sqrt{\dfrac{a_1}{a_2}}$

$\left(\sqrt{a_1}-\dfrac{1}{\sqrt{a_2}} \right)^2=0,\,\,\,\rightarrow a_1=\dfrac{1}{a_2}$

and analogously $a_2=\dfrac{1}{a_3},\,\cdots,\,a_{100}=\dfrac{1}{a_1}$.

Hence, we get $a_1=2,\,a_2=\dfrac{1}{2},\,\cdots\,,a_{99}=2,\,a_{100}=\dfrac{1}{2}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top