Discovering the Inverse Fourier Transform

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Email
Click For Summary
SUMMARY

The Inverse Fourier Transform of the function \displaystyle F(\omega) = \frac{-5(i\omega + 4)}{16+(i\omega + 4)^2} is calculated using established Fourier Transform tables. The transformation yields \displaystyle \mathcal{F}^{-1} \left\{ F(\omega) \right\} = -5e^{-4t}e^{4it}H(t) + 5i\,e^{-4t}\sin{(4t)}H(t). The parameters used in the transformation include a = 4 and k = 4, confirming the function's alignment with known forms. Algebraic manipulation was essential to express the function in a suitable format for transformation.

PREREQUISITES
  • Understanding of Fourier Transforms and their properties
  • Familiarity with complex numbers and algebraic manipulation
  • Knowledge of the Heaviside step function, H(t)
  • Experience with mathematical notation and transformations
NEXT STEPS
  • Study the properties of the Heaviside step function, H(t)
  • Learn about the applications of the Fourier Transform in signal processing
  • Explore advanced topics in complex analysis related to Fourier Transforms
  • Review additional examples of Inverse Fourier Transforms from mathematical tables
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with signal processing, particularly those interested in Fourier analysis and its applications.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Miko asks:

What is the Inverse Fourier Transform of [math]\displaystyle \begin{align*} F(\omega) = \frac{-5(i\omega + 4)}{16+(i\omega + 4)^2} \end{align*}[/math]?
 
Last edited by a moderator:
Physics news on Phys.org
Miko asks:

What is the Inverse Fourier Transform of [math]\displaystyle \begin{align*} F(\omega) = \frac{-5(i\omega + 4)}{16+(i\omega + 4)^2} \end{align*}[/math]?

Miko has sent me a scan with a great attempt of this question, but has tried to use a shift when a shift is not necessary.

From a table of Fourier Transforms, we can see that [math]\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{a + i(\omega + k)}{k^2 + (a + i\omega)} \right\} = e^{-at}e^{ikt}H(t) \end{align*}[/math] and [math]\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{k}{k^2 + (a + i\omega)^2} \right\} = e^{-at}\sin{(kt)} H(t) \end{align*}[/math]. The function given has an identical denominator (with [math]\displaystyle \begin{align*} a = 4 \end{align*}[/math] and [math]\displaystyle \begin{align*} k = 4 \end{align*}[/math]) and so it would suggest that the function given is a combination of the functions given in the tables. So doing some algebraic manipulation...

[math]\displaystyle \begin{align*} F(\omega) &= \frac{-5(i\omega + 4)}{16 + (i\omega + 4)^2} \\ &= \frac{-5i\omega - 20}{16 + (i\omega + 4)^2} \\ &= \frac{-5i(\omega + 4) + 20i - 20}{16 + (i\omega + 4)^2} \\ &= -5 \left[ \frac{4 + i(\omega + 4)}{16 + (i\omega + 4)^2} \right] + 5i \left[ \frac{4}{16 + (i\omega + 4)^2} \right] \end{align*}[/math]

which is now in the forms given in the tables. Therefore

[math]\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{-5(i\omega + 4)}{16 + (i\omega + 4)^2} \right\} &= \mathcal{F}^{-1} \left\{ -5 \left[ \frac{4 + i(\omega + 4)}{16 + (i\omega + 4)^2} \right] + 5i \left[ \frac{4}{16 + (i\omega + 4)^2} \right] \right\} \\ &= -5e^{-4t}e^{4it}H(t) + 5i\,e^{-4t}\sin{(4t)}H(t) \end{align*}[/math]For Miko and anyone else viewing this and having similar questions, I invite you to read and post in the http://www.mathhelpboards.com/f16/ subforum.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K