Displacement problem with unit vectors

Click For Summary
SUMMARY

The discussion focuses on solving displacement problems using unit vectors and the dot product in vector mathematics. Participants shared their calculations and identified errors in their approaches, particularly in applying the dot product formula a · b = (ax * bx + ay * by) and calculating vector magnitudes. Key results include the correct computation of the dot product yielding -33.5 and the clarification of the magnitude of vectors as |d| = sqrt(d · d). Understanding these concepts is crucial for accurately solving vector-related problems.

PREREQUISITES
  • Understanding of vector mathematics and operations
  • Familiarity with the dot product formula
  • Knowledge of calculating vector magnitudes
  • Basic trigonometry for angle calculations in vectors
NEXT STEPS
  • Study the properties and applications of the dot product in vector analysis
  • Learn how to calculate vector magnitudes and their significance in physics
  • Explore the concept of vector components along other vectors
  • Practice solving displacement problems using unit vectors and trigonometric functions
USEFUL FOR

Students and professionals in physics, engineering, and mathematics who need to understand vector operations and their applications in solving displacement problems.

Ursa
Messages
11
Reaction score
2
Homework Statement
In a meeting of mimes, mime 1 goes through a displacement d1 = (7.07 m)i + (3.94 m)j and and mime 2 goes through a displacement d2 = (-7.03 m)i + (4.1 m)j. What are (a)|d1 × d2|, (b)d1 · d2, (c)(d1 + d2) · d2, and (d) the component of d1 along the direction of d2?
Relevant Equations
a · b = ab *cos ϕ
a · b = ax*bx+ ay*by+az*bz
a = sqrt(ax^2+ay^2)
rx=ax+bx
rx=ax+bx
(a) I did (7.07*4.1)-(-7.03*3.94)=56.7 with this method I got this answer correct in my first attempt.

(b) This where I seem to have gone wrong. I used a · b = (axbx +ayby) then I used a = sqrt(ax2+ay2) to get a single number for the answer. Filling in the numbers 7.07*-7.03 + 4.94*4.1 = -49.7i+16.2j. Then sqrt(-49.2+16.22)=52.3

(c) I first solved for (d1 + d2) with ax+bx 7.07+-7.03 + 4.94+4.1 = -0.04i+8.04j. Then used those unit vectors in the same way as in part (b) to get 32.97

(d) This one I didn't understand at all, I gave it a shot by trying to solve d1 *cos ϕ. first trying to find ϕ by a · b = ab *cos ϕ
cos-1((a · b)/ab). Finding d1 and d2 by a = sqrt(ax2+ay2
d1=8.09
d2= 8.14
cos-1(52.3/8.09 * 8.14)=37.4

Then 8.14 cos 37.4= 6.43 mI just fundamentally don't understand vectors and really don't get how to do math with them. Any analyses of what I'm doing wrong, explanation and/or drawings would be appreciated.
 
Last edited:
Physics news on Phys.org
Ursa said:
(b) This where I seem to have gone wrong. I used a · b = (axbx +ayby) then I used a = sqrt(ax2+ay2) to get a single number for the answer. Filling in the numbers 7.07*-7.03 + 4.94*4.1 = -49.7i+16.2j. Then sqrt(-49.2+16.22)=52.3
The dot product is just a number so: ##\vec d_1 \cdot \vec d_2 = 7.07*-7.03 + 3.94*4.1 = -49.7+16.2##

Note that should be ##3.94## in there.

Ursa said:
(d) This one I didn't understand at all,
The component of one vector along another is what you get if you imagine taking the second vector as one of your basis vectors. Specifically, the component of ##\vec d_1## along ##\vec d_2## is defined as:
$$\frac{\vec d_1 \cdot \vec d_2}{|\vec d_2|}$$
 
PeroK said:
The dot product is just a number so: ##\vec d_1 \cdot \vec d_2 = 7.07*-7.03 + 3.94*4.1 = -49.7+16.2##
So in order to get the answer I should just add ##-49.7+16.2## to get ##-33.5##?

PeroK said:
The component of one vector along another is what you get if you imagine taking the second vector as one of your basis vectors. Specifically, the component of ##\vec d_1## along ##\vec d_2## is defined as:
$$\frac{\vec d_1 \cdot \vec d_2}{|\vec d_2|}$$
Once I grasp how to get ##\vec d_1 \cdot \vec d_2## correct I have the top part, but could you expand on what exactly the denominator is? Will is be the ##d_2## = 8.14 which I calculated in my attempt?
 
Ursa said:
So in order to get the answer I should just add ##-49.7+16.2## to get ##-33.5##?Once I grasp how to get ##\vec d_1 \cdot \vec d_2## correct I have the top part, but could you expand on what exactly the denominator is? Will is be the ##d_2## = 8.14 which I calculated in my attempt?
Yes, and yes. If ##\vec d## is a vector, then ##|\vec d| \equiv d \equiv \sqrt{\vec d \cdot \vec d}## where ##|\vec d|## and ##d## are both common notations for the magnitude of a vector.
 
PeroK said:
Yes, and yes. If ##\vec d## is a vector, then ##|\vec d| \equiv d \equiv \sqrt{\vec d \cdot \vec d}## where ##|\vec d|## and ##d## are both common notations for the magnitude of a vector.
Thank you, now I understand it a bit better.
 
  • Like
Likes   Reactions: PeroK

Similar threads

Replies
1
Views
2K