Disproving Pythagorean Theorem

Click For Summary
The discussion revolves around an individual's attempt to disprove the Pythagorean theorem using a personal proof involving congruent right triangles. The proof suggests that the area of a square formed by these triangles leads to the equation c² = 2ab, which contradicts the theorem. However, participants clarify that the triangles must be 45-45-90 triangles for the proof to hold, meaning a = b, and thus the equation does not actually contradict the theorem. They also point out that using different side lengths, such as a = 4 and b = 5, shows that the derived value for c is incorrect according to the Pythagorean theorem. Ultimately, the conversation highlights misunderstandings in the application of geometric principles rather than a valid disproof of the theorem.
Big Gus
Messages
2
Reaction score
0
Ever since I was in grade school I have been fascinated with the idea that the Pythagorean theorem, or any other universally respected theorem, could be wrong. When I was younger I found a little proof I made to disprove it, and I came across it in an old notebook of mine. Now after taking calculus and other more advanced maths I see that Pythagoras could not be wrong, however, I am having trouble actually disproving the proof I made to disprove Pythagoras's theorem, if that makes sense. I may just be having a serious brain fart so don't kill me.

The proof I made was this:

Make 4 congruent right triangles with side lengths of "a" and "b" and a hypotenuse with a length "c" and put the triangles together to make a square where the hypotenuses of the triangles are on the outside of the square. it should look like this: http://4.bp.blogspot.com/-YF-2E8vTRLs/TmoSmBD65wI/AAAAAAAABX8/BPFkCMM0vGE/s1600/QST.png

Obviously the area of the triangle is A=c^2, the Area could also be the area of each triangle A=1/2ab, there are 4 of them so it becomes A=2ab. Through substitution we get c^2=2ab.

c^2=2ab doesn't agree with the Pythagorean theorem, the problem I have having is explaining why this is so... I can't find an error in my logic. So can you guys help me out and tell me where I went wrong?
 
Mathematics news on Phys.org
"c^2=2ab doesn't agree with the Pythagorean theorem"

I agree with you up til here. So you created a square, right? Meaning that each triangle is a 45 45 90, right? So then a=b. Then c^2=a^2+b^2=a^2+a^2=2a^2=2ab. I see no reason why this contradicts the Pythagorean Theorem.
 
hmm... well I do you see they don't have to be 45 45 90 triangles, it could be a rectangle too, sorry for saying square. Try an example let's say a=4 b=5 and by the Pythagorean theorem c=5 but by the formula c^2=2ab c=sqrt20..
 
This site is not the place to discuss your misunderstandings.

Thread closed.
 
Big Gus said:
hmm... well I do you see they don't have to be 45 45 90 triangles, it could be a rectangle too, sorry for saying square.

In reference to your drawing, and working backwards, if you start with a rectangle and draw two diagonal lines, the four angles at the center will not be congruent. That means that none of the angles at the center can be 90°.

The only way that the central angles can all be congruent (and thus 90° each) is when the rectangle is actually a square. In this case the triangles are all 45° - 45° - 90° right triangles, and the two legs are equal in length. If the square is a units on each side, each leg of the triangle that makes up a quarter of the square will be a/√2.

Big Gus said:
Try an example let's say a=4 b=5 and by the Pythagorean theorem c=5 but by the formula c^2=2ab c=sqrt20..
No. If the legs of a right triangle are a = 4 and b = 5, then c can't be 5. This would be too short. By the Pythagorean Theorem, c = √(42 + 52) = √41 ≈ 6.4.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
4K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K